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We have used a commercially available liquid-crystal spatial light modulator within a reflective optics
pulse-shaping apparatus to shape ultrashort pulses with temporal resolution approaching 10 fs. Using
the spatial light modulator as a phase modulator, we produce a variety of complex ultrafast waveforms,
including odd pulses, high repetition rate (.23 THz) pulse trains, and asymmetric pulse trains. We also
show that it is possible to compensate for large amounts of high-order phase dispersion (in excess of 60p)
by appropriate cubic- and quartic-phase modulations of the pulse. Finally, we examine the limitations of
shaping ultrabroad-bandwidth pulses. We find that, for specific classes of waveforms, Fourier-transform
pulse-shaping techniques can be used for pulses with 5-fs durations, which exceed the current state of the art
in ultrashort pulse generation. However, synthesis of general waveforms with 5-fs resolution will require
compensating for nonlinear spatial dispersion of frequency in the masking plane.  1995 Optical Society of
America
1. INTRODUCTION

Pulse shaping within a dispersion-free grating–lens ap-
paratus has proved to be a powerful method for synthe-
sizing complex femtosecond optical waveforms. In this
method, which was first developed in the femtosecond
regime by Weiner et al.,1 an optical pulse is first trans-
formed from the time domain into the frequency do-
main. A frequency-dependent complex linear filter that
modifies the spectrum of the pulse is then applied. Fi-
nally, the pulse is transformed back into the time do-
main. The resulting output pulse has a temporal field
profile that is essentially the Fourier transform of the
frequency filter imposed on the electric-field spectrum of
the pulse.

The ability to shape pulses has led to many applica-
tions in the fields of physics and chemistry, such as the
observation of the fundamental dark soliton in optical
fiber2 and mode-selective excitation of coherent phonons.3

A particularly powerful application of femtosecond pulse
shaping is the dynamic control of molecular and chem-
ical systems4 – 6 in which the goal is to drive a system
into a user-specified final quantum state by use of tai-
lored optical fields to interact coherently with and to
manipulate the dynamic evolution of the system. Ex-
perimental demonstrations thus far include control of
the evolution of an electronic wave packet in molecu-
lar iodine.7 Recently, new proposals have been put
forth for extending these ideas into solid-state electron-
ics and optoelectronics.8 – 10 Appropriately designed opti-
cal or electrical fields could be used to control the evolu-
tion of electron-hole distributions in a multiple quantum
well or a superlattice. In addition, it has recently been
shown that a complex chirped-pulse train can resonantly
excite large-amplitude plasma oscillations and laser wake
fields.11 The use of shaped laser pulses as wake-field
drivers may lead to a new class of laser-based charged
particle accelerators.
0740-3224/95/101968-13$06.00 
Initial femtosecond pulse-shaping efforts employed
masks that were lithographically patterned on fixed sub-
strates that, although providing shaped pulses of ex-
tremely high fidelity, were experimentally cumbersome
in that they required mask replacement and realign-
ment each time a new waveform was desired.1 Within
recent years, several innovations have been developed
that have improved both the ease and the versatility
with which pulses can be shaped. Most notably, the use
of dynamically reconfigurable filters (masks) has been
demonstrated by a number of groups as a way of in-
troducing real-time programmability of shaped pulses.
These methods include the use of a single liquid-crystal
modulator within a pulse shaper, which can alter ei-
ther phase or amplitude independently,12 the use of two
liquid-crystal modulators within a modified pulse shaper,
which provide independent control of both phase and
amplitude,13 and, most recently, the use of an acousto-
optic modulator within a pulse-shaping apparatus, which
can simultaneously modulate phase and amplitude.14

Each of these methods has been applied with success
to pulses with durations of greater than 70 fs. More
complex optical processing and waveform synthesis (con-
volution and time-to-space conversion) have been demon-
strated by the use of spectral holographic techniques.15 – 17

Phase-only filtering has been demonstrated on pulses as
short as 20 fs.18 However, only fixed masks were used.
Although these experiments demonstrated that it was
possible to shape pulses on these time scales, the fidelity
of the shaped pulses was compromised somewhat by the
quality of the input pulses, which were generated by
the use of spatial soliton pulse compression techniques.19

The development of mode-locked Ti:sapphire lasers now
affords us the opportunity to extend these methods to
pulses that approach 10 fs in duration and, in particu-
lar, to explore the limits imposed by such short-duration,
ultrabroad-bandwidth optical pulses. With current laser
technology, it is now possible to produce pulses as short as
1995 Optical Society of America
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8.6 fs in duration directly from a laser oscillator.20 Such
a pulse has only three oscillations of the electromagnetic
field and begins to approach the theoretical limitation of
a single-cycle pulse.

In this paper we extend spectral-domain pulse-shaping
techniques to ultrabroad-bandwidth pulses and explore
the limitations inherent in tailoring ultrashort wave-
forms. In particular, we demonstrate the use of a com-
mercially available liquid-crystal one-dimensional spatial
light modulator (SLM) in a pulse shaper to synthesize
a variety of complex ultrafast waveforms with resolution
approaching 10 fs. There are two important motivations
for extending pulse-shaping techniques into pulse-width
regimes of 10 fs and less.

First, the manipulation and control of frequency-
dependent phase dispersion has long been recognized
as one of the methods for generating and propagating ul-
trashort pulses. For ultrabroad-bandwidth pulses, it is
critical to minimize phase distortions (cubic and higher-
order phase dispersion) and to maintain a constant phase
across the entire frequency spectrum as pulses propa-
gate through dispersive elements. Adjustable frequency-
domain pulse-shaping methods such as these are ideally
suited for compensating for phase distortions and could
potentially be incorporated directly into laser cavities
that are currently limited by fourth-order phase.21 Simi-
lar difficulties exist on a much larger scale in chirped-
pulse amplifiers,22 – 24 which incorporate rudimentary
pulse shaping in the form of stretchers and compres-
sors. Recently it has been recognized that the residual
higher-order phase that is imparted to the pulse can
compromise the width and the fidelity of pulses that are
100 fs in duration25 and is particularly problematic when
one attempts to amplify 20-fs pulses.26 As we show be-
low, the use of programmable pulse-shaping techniques
gives us the capability to control large cubic- and quartic-
phase shifts arbitrarily and independently. Moreover,
the use of a programmable pulse shaper in the ampli-
tude mode can be used to shape input pulse spectrums
dynamically to overcome the effects of gain narrowing in
chirped-pulse amplifier systems.24

Second, the ability to tailor waveforms with resolution
nearing that of the underlying carrier frequency rep-
resents an important advance in achieving the goal of
quantum optimal control of complex molecular systems.4

Quantum optimal control computations performed on re-
alistic complex molecules suggest that it is possible to
achieve novel, physically interesting target final states
(control of bond stretching, vibrational amplitudes, and
bond-selective dissociation) by the use of shaped visible
and infrared lasers as controllers. One key finding of
theoretical investigations is that, in order to achieve
specific target states, phase and amplitude control of
the optical field must be exercised at the scale of the
carrier frequency. Here, we manipulate optical fields
that are 13 fs in duration and have only five field cycles.

This paper is organized in the following manner. In
Section 2, we give a description of the apparatus and de-
tails pertinent to our experiments. The results of our ex-
periments in which phase filtering is used are presented
in Section 3, in which we display various synthesized
waveforms, including odd pulses, pulse trains with rep-
etition rates in excess of 23 THz, and asymmetric pulse
trains produced from masks with gray-level phase control.
The use of a pulse shaper as a high-order phase compen-
sator is presented in Section 4. Here we show that inde-
pendently adjustable cubic- and quartic-phase profiles (in
excess of 60p) can be imparted with a negligible compro-
mise of pulse fidelity. A general discussion of the diffi-
culties associated with shaping 13-fs pulses is presented
in Section 5, including the effects of phase and spatial dis-
persion of the frequency components. In particular, we
theoretically consider how well these methods work on
pulses much shorter than those used here. We conclude
in Section 6.

2. EXPERIMENTAL METHODS
All our pulse-shaping experiments were performed with
a commercially available one-dimensional liquid-crystal
SLM (Meadowlark Optics SLM2256), which is described
in more detail below. Our pulse shaper, which is simi-
lar in design to that previously used in shaping a 20-
fsec pulse, is shown in Fig. 1. It consists of a pair
of 600 lineymm gratings placed at the focal planes of
a unit-magnification confocal pair of concave 12.5-cm
focal-length gold spherical mirrors. Midway through
the apparatus, the optical frequencies are spatially
separated, with a linear spatial dispersion given by
dxydl ø fysd cos udd ø 0.085 mmynm, where f is the
focal length, d is the grating period, ud ­ 28.1± is the
diffraction angle, and x is the position of each frequency
component in the masking plane. Because our shaper
is designed to accommodate 130 nm (which corresponds
to a 12-mm-wide spectrum at the masking plane), the
spatial dispersion exhibits a 6% wavelength variation
over the bandwidth of the pulse. We consider these ef-
fects in more detail in Section 5. In constructing our
shaper, we selected a spectral window that truncated at
approximately six e-foldings of the maximum intensity.

For these studies, we used a dispersion-compensated
mode-locked Ti:sapphire laser with a short (4.5-mm)
Ti:sapphire crystal, similar to the design of Asaki et al.27

Average output powers of 200 mW for 4.5-W pump power
were obtained after the beam was double passed through
an extra-cavity prism sequence. For most of our experi-
ments, pulse durations were measured in a noncollinear

Fig. 1. Schematic of the ultrabroad-bandwidth pulse-shaping
apparatus.
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autocorrelator consisting of balanced scanning and refer-
ence arms, a focusing mirror, and a 0.1-mm-thick KDP
crystal. We routinely measured pulse widths in the
range of 12–14 fs (sech2 pulse shape).

The modulator consists of 128 individually address-
able elements 100 mm wide by 500 mm high with a 2-
mm gap between each pixel for an effective window of
13 mm. The liquid-crystal pixels are mounted in a 4.6-
mm-thick fused-silica housing. Driver circuitry supplied
by the manufacturer provided independent voltage con-
trol with 12-bit resolution. An important consideration
in our experiments was the variation of phase as a func-
tion of wavelength. Phase shifts in excess of 2p at all
wavelengths are required for utilizing the full capability of
the pulse shaper. We therefore performed calibration of
the modulator at 750-, 800-, and 850-nm wavelengths that
effectively span the mode-locked spectrum of the pulse.
We accomplished this by placing the modulator between
two crossed Glan–Thompson polarizers whose polariza-
tion angles were oriented 645± with respect to the slow
(vertical) axis of the liquid crystal. The beam diameter
of ,300 mm resulted in averaging of the phase over three
pixels. The transmission of the beam was then recorded
as a function of voltage applied to the modulator. The
theoretical transmission for our vertically input polar-
ized beam can be easily computed by the use of Jones
matrices28 and is given by

DfsVpd ­ cos21

"
1 2 2

ItranssVpd
Iin

#
, (1)

where Df is the voltage-dependent phase difference be-
tween the slow and the fast axes of the modulator, Vp is
the pixel applied voltage, and Itrans and Iin are the trans-
mitted and the input intensities, respectively. Figure 2
displays the phase change for the three wavelengths.
Maximum phase shifts in excess of 2p were obtained at
all wavelengths. The maximum phase shift was mea-
sured to be almost 3p at 750 and 800 nm with an effective
gray-level resolution of approximately 2000, which corre-
sponds to a phase resolution of ,2 mrad. More signifi-
cantly, we found uniformity of phase shift in the range
of 0 to 2p for all wavelengths with an approximately lin-
ear response from 0 to 1.5p. The negligible difference
in phase shift between 750 to 800 nm is somewhat sur-
prising, as Df ­ 2pnsVpdLyl scales inversely with wave-
length. The lower saturation value s,2.5pd of the phase
shift at 850 nm is qualitatively (but not quantitatively)
consistent with this scaling. We also tested pixel unifor-
mity of the device at a single wavelength by operating
the modulator at a fixed voltage and scanning across the
pixels. Slight variations in transmitted intensity (,5%)
were observed.

Spectra of the shaped pulses were measured with a
0.3-m spectrometer and linear photodiode array. Tem-
porally shaped pulse profiles were measured with stan-
dard noncollinear cross-correlation techniques. A small
portion of the beam was split off to serve as the reference.
After traversing the shaper, the beams were mixed in a
0.1-mm KDP crystal. Because of the high repetition rate
and average power of the Ti:sapphire laser, we were able
to obtain all our data in single scans. Figure 3 displays
a cross correlation of an unshaped pulse propagating
through the shaper (solid curve) and the intensity auto-
correlation of the laser. The autocorrelation widths and
the cross-correlation widths are 19.8 and 20.3 fs, respec-
tively. Note that the wings of the cross correlation are
diminished with respect to the autocorrelation. This is
due to a reduction in the amount of excess cubic phase
as the pulse propagates through the shaper. We discuss
the effects of high-order phase in more detail in Section 5.

3. PHASE FILTERING OF
ULTRABROAD-BANDWIDTH PULSES
As an initial test of our capabilities, we chose to syn-
thesize simple temporal pulse profiles with the SLM
operated as a phase filter. In this configuration, the in-
coming light is polarized vertically, along the slow axis
of the liquid-crystal modulator. Approximately 33% of
the input beam was transmitted through the shaper,
with losses predominantly from zeroth- and second-
order diffractions from the grating.5 Some difference
in throughput was measured with the biased SLM in the
shaper. Owing to the uniformity of the SLM phase re-
sponse, a single phase-to-voltage calibration was used for
all wavelengths. This greatly simplified the generation
of masks in our experiments.

Fig. 2. Phase versus voltage calibration for the liquid-crystal
SLM for 750 nm (solid curve), 800 nm (dashed curve), 850 nm
(short-and-long-dashed curve). Phase shifts in excess of 2p can
be obtained at all wavelengths.

Fig. 3. Cross correlation (solid curve) of an unshaped pulse
after it propagates through the shaper. The (sech2) deconvolved
pulse width is 13.0 fs. For comparison, an autocorrelation di-
rectly from the oscillator is displayed (dashed curve).
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One of the simplest pulses that can be synthesized by
pure phase filtering is the odd pulse. The odd pulse
is generated when a p-phase shift of the carrier fre-
quency is imposed in the center of a symmetric spec-
trum. The term odd pulse reflects the antisymmetric
functional dependence of the electric-field envelope on
time and is a special type of the zero-area s0pd pulse,
which is of fundamental significance in the field of coher-
ent optics.29 The resonant interaction of an odd pulse
with a two-level atom results in an initial excitation
from the ground state to the excited state during the
leading part of the pulse followed by deexcitation back
to the ground state during the latter part of the pulse
as a result of the abrupt p-phase shift. Odd pulses
could also prove useful for enhancing terahertz emissions
from asymmetric coupled quantum wells.10 A cross cor-
relation of an odd pulse generated from a 13-fs pulse
is shown in Fig. 4. Unlike a pure odd pulse, which
possesses a symmetric intensity profile, our pulse dis-
plays a slight asymmetry in the widths of the peaks.
These deviations come from primarily two sources. First,
the frequency spectrum of the Ti:sapphire laser is not
symmetric and therefore does not truly conform to the cri-
teria for an odd pulse. In addition, uncompensated cubic-
and quartic-phase dispersions from the SLM are present
in the shaped output pulse. Nevertheless, the overall fi-
delity of the odd pulse is excellent.

Another simple but powerful phase filter for gener-
ating a train of equally spaced pulses is based on so-
called maximal length sequences30 (M-sequences). This
method has previously been used to generate pulse trains
with repetition rates of up to 12.5 THz.18 Pulse trains
such as these have been used as a means of exciting
optical phonon modes in molecular crystals by impulse-
stimulated Raman scattering.3 These masks are binary-
phase masks whose phase response is periodic with a
period corresponding to a frequency dF . Each period is
divided into P pixels, with the phase of each pixel given
by either 0 or DfsVd ­ 2pnsVpdLyl, as determined by
the M-sequence, where L is the optical path of the pixel
and nsVpd is the SLM-induced index change. The out-
put pulse train then consists of a series of P individual
pulses under a Gaussian envelope with repetition rate
dF . For these experiments, we used the length 7 M-
sequence hDf,Df, 0, Df, 0, 0, 0j with Df ­ 1.1p. Our
results are shown in Fig. 5, which displays cross corre-
lations of pulse trains with repetition periods of 8.8 THz
[Fig. 5(a)], 16.0 THz [Fig. 5(b)], and 23.6 THz [Fig. 5(c)].
We note that 23.6 THz is, to our knowledge, the highest
modulation frequency ever imposed on a lightwave by
the use of linear-filtering techniques. Both the 8.8- and
16.0-THz trains have well-resolved individual pulses.
Pulses in the 23.6-THz train are not as well resolved,
but individual pulses are clearly evident. The choice
of periodicities was dictated by fixed pixel sizes and
fixed spectral dispersion in the Fourier plane of the
shaper. Neglecting higher-order spatial dispersion in the
mask plane, each SLM pixel accommodates a bandwidth
of dvydxDxpixel ­ 0.47 THz. A repetition of M pixels
should result in pulse trains that have repetition rates of
an integer multiple of 0.47M THz, the length of the M-
sequence multiplied by the bandwidth of one pixel. Con-
tinuous adjustment of the spatial frequency dispersion in
the Fourier plane requires either adjusting the diffrac-
tion angle of the shaper gratings or incorporating ad-
justable focal-length (telescoping) optics with the shaper.
Note, however, that the repetition periods of the pulse
trains generated in these experiments are not simple
integer multiples of each other, because higher-order spa-
tial dispersion slightly modifies the repetition period of
the trains.

Many physical applications demand complex pulse
shapes that, for example, possess asymmetric tempo-
ral profiles. As an example, impulsive resonant Ra-
man excitation of large-amplitude (anharmonic) optical
phonons requires tailoring an optical pulse train to first
harmonically excite vibrational modes with a train of
equispaced pulses and then, as the amplitude of the vi-

Fig. 4. Cross correlation of a 13-fs odd pulse. The high fidelity
of this pulse is characterized by the depth of central minimum
of the pulse.

Fig. 5. Cross correlations of phase-filtered terahertz-rate pulse
trains generated by length 7 M-sequences: (a) 8.8-THz train, (b)
16.0-THz train, (c) 23.6-THz train.
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bration becomes sufficiently large, to follow the phonon
out of the harmonic well by adjusting the interpulse
spacing. Such pulse trains may also be useful in driv-
ing large-amplitude plasma oscillations in low-density
laser-produced plasmas.11 In principle, any arbitrar-
ily shaped waveform can be synthesized if both phase
and amplitude filtering can be implemented. The ap-
propriate complex frequency filter is simply given by
Msvd ­ Asvdexpfifsvdg ­ EoutsvdyEinsvd. However,
pure phase filtering is desirable when (i) both phase
and amplitude filtering cannot be experimentally imple-
mented, or (ii) the reduction in energy that necessarily
accompanies amplitude filtering is undesirable. Binary-
phase-only filters necessarily generate waveforms that
have symmetric intensity profiles and cannot be used for
the generation of more complex pulses. We therefore at-
tempted to synthesize more complex (asymmetric) pulse
trains by using gray-level phase masks. For these ex-
periments, we designed phase filters by using simulated
annealing optimization codes.31 Simulated annealing
methods have previously been used to design gray-level
phase and amplitude filters successfully to overcome
limitations of fixed SLM pixel size.13 However, these
methods met with limited success in synthesizing pure
phase filters,32 particularly when confronted with tar-
get pulses whose features deviated significantly from the
input pulse on the time scale of the input pulse. We
therefore adopted a modest strategy of selecting targets
of the form

Etargetstd ­ ustd p
NP

k­2N
Ak expfiak

s2dt2gdst 2 kT d , (2)

i.e., targets that consist of trains of pulses in which the
spacing between pulses or the pulse durations were var-
ied. Here ustd is the field profile of an unshaped pulse,
0 # Ak # 1 is real and defines the field amplitude for the
pulse at time t 2 kT , ak

s2d , v0
2 is the quadratic chirp

parameter for the kth pulse, and p is the convolution
operator. We expect that filters generated by using
optimization methods should be most physically effec-
tive in accurately positioning pulses within the train, as
this depends only on the introduction of the appropri-
ate phase delay at the appropriate portions of the pulse
spectrum. Individual pulse amplitudes within the train
are determined by the relative weight (energy) of the
phase-shifted spectrum and therefore are sensitive to the
exact amplitude profile of the input spectrum. Briefly,
phase masks with 64 gray levels were randomly gener-
ated and multiplied with the experimentally measured
input spectrum to generate an output field spectrum
Eguesssvd ­ Einsvdexpfifisvdg. The resulting temporal
waveform Eguessstd was computed by an inverse Fourier
transform on a 1024-element temporal grid and com-
pared with a specified target waveform Etargetstd by the
computation of a simple cost functional J:

JfFsvdg ­
1024P
j­1

jEguess
2stj d 2 Etarget

2stj dj , (3)

which minimizes the differences in intensity ampli-
tude between the generated and the target fields.
The minimization of J proceeds by the computation of
DJ ­ Jcurrent 2 Jprev , in which the current guess is al-
ways accepted if DJ , 0 and is accepted with probability
exps2DJyT d if DJ $ 0. The temperature T is initially
set to a value well in excess of DJ. In this way, the
cost function is initially free to move about its entire
parameter space and seek out the global minimum. As
the annealing proceeds, the temperature is reduced and
the cost function descends into the global minimum.

Results for three different trains are shown in Fig. 6.
The first [Fig. 6(a)] is a train of three pulses in which the
amplitudes and the interpulse spacings are varied. The
agreement between the target train (dashed curve),
the numerically synthesized pulse train in which the
optimal mask is used (dotted-dashed curve), and the ex-
perimental cross correlation (solid curve) is excellent,
with slight deviations in the amplitudes (,10%) and po-
sitions (,5 fs) of the experimentally synthesized train.
Approximately 92% of the initial pulse energy resides
in the target pulses, in good agreement with numeri-
cal results. Because the theoretical plots have not been
convolved with the original reference pulse, the slight
temporal broadening is an artifact of the cross correla-
tion. Figure 6(b) depicts a train of three equal ampli-
tude pulses in which both interpulse spacings and pulse
durations are varied. Again we find reasonably good
agreement between the target and the cross correlation.
Temporal positions agree to within ,10 fs, and, with the
exception of the first pulse in the train, pulse durations
are within ,10% of the target. In the worst case, the
amplitudes vary by ,25% of the target value. Finally,
in Fig. 6(c) we display a chirped-pulse train consisting
of six replica pulses. Once again, we observe minimal

Fig. 6. Cross correlations of asymmetric, chirped trains of fem-
tosecond pulses generated by 64 gray-level phase masks designed
with simulated annealing. Each panel shows the target (dashed
curve), the numerical results (dotted-dashed curve), and the
experimental cross correlation (solid curve).
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deviations (,10 fs) from the peak target pulse positions.
Excluding the initial pulse, experimental cross-correlation
amplitudes are within 15% of their target values. The
initial pulse has a peak amplitude of approximately 40%
of the target value, and slight variations in pulse dura-
tions are observed.

4. COMPENSATION OF CUBIC- AND
QUARTIC-PHASE DISPERSIONS
Compensation of high-order phase dispersion in pulse-
compression and pulse-amplification applications is an-
other potential application of programmable pulse shap-
ing. The propagation of ultrabroad-bandwidth pulses
through dispersive media results in severe pulse broad-
ening as frequency-dependent phase shifts accumulate.
For optical pulses with spectra that are not too broad
(i.e., that satisfy Dvyv0 ,, 1), the phase of an optical
pulse propagating through dispersive media can be con-
veniently expressed in a Taylor series as

Fsvd ­ Fsv0d 1 Fs1dsvdsv 2 v0d 1
1
2 !

Fs2dsvdsv 2 v0d2

1
1
3 !

Fs3dsvdsv 2 v0d3 1
1
4 !

Fs4dsvdsv 2 v0d4

1 . . . , (4)

where v0 is the center frequency of the pulse and
Fsndsvd ­ sdnFydvndv­v0 is the nth-order derivative of
the phase evaluated at v0. The group delay and the
linear dispersion of an optical pulse are given by the lin-
ear term Fs1d and the quadratic term Fs2d, respectively.
Compensation of linear dispersion is normally accom-
plished through the use of grating or prism pairs33,34;
however, for pulse compression of sub-10-fs pulses35 or
chirped-pulse amplification of sub-100-fs pulses,26,36 can-
cellation of higher-order phase dispersion fFs3d, Fs4dg is
essential for optimizing the fidelity and the duration
of the pulse. Methods for compensating for higher-order
dispersion include the use of ray-tracing algorithms to de-
sign amplifiers in which phase dispersion cancels at each
order26 and the incorporation of adjustable air-spaced
doublet lenses into stretchers that provide independent
control of third- and fourth-order dispersions.25 In this
section, we show that large cubic-fFs3dg and quartic-fFs4dg
phase shifts (over 120p) can be imprinted on pulses by
the programmable pulse shaper.

We impart the cubic phase on a pulse by com-
puting the frequency-dependent phase, DFcubicsvd ­
s1y3!dFs3dsv0dsv 2 v0d3, and then mapping this onto the
masking plane. Because the liquid-crystal SLM is re-
stricted to phase shifts of 2p, larger phase shifts are
accomplished when the phase is folded back into the
range 2p # DF # p; DFfoldsxd ­ DFcubicsxd 2 s2N 1 1dp.
Moreover, because the SLM is pixelated, it cannot im-
print a smooth continuous-phase profile. Instead, the
spectrum is sampled by the modulator at discrete points,
DFnsxd ­ DFsxnd, where xn is the position of the nth
pixel. As discussed by Weiner et al., these sampling cri-
teria place an upper limit of DF ­ p between pixels,
thus limiting the total amount of phase shift that can be
imparted to a pulse.12 In our experiments, this places
an upper limitation of approximately 130p of total phase
shift. Clearly any increase in pixel number of the SLM
will allow for larger phase shifts.

In Fig. 7(a), we show the cross correlation of a pulse
with a cubic chirp of Fs3d ­ 6.0 3 104 fs3, which corre-
sponds to a total phase shift of ,12p over a 100-nm band-
width. For comparison, a theoretical intensity profile is
also shown. The experimental cross correlation (solid
curve) shows remarkable fidelity and agrees well with
the theoretical intensity profile for a cubic-phase modula-
tion placed on a Gaussian-pulse spectrum (dashed curve).
The temporally chirped, oscillatory prepulse is character-
istic of cubic chirp in which equally temporally advanced
higher- and lower-frequency components lead the pulse
and interfere with each other. The effects of sampling
are clearly evident in Fig. 7(b), which shows a cross cor-
relation for a cubic chirp of Fs3d ­ 6.0 3 105 fs3 (a phase
shift of 121p). The lobe shows three distinct peaks, and
a pulse substructure is seen on the trailing edge of the
pulse. Undersampling is also evident in the theoretical
intensity profile, in which a Gaussian spectrum was sam-
pled at 128 points. In Fig. 8, we display linear [Fig. 8(a)]
and semilog [Fig. 8(b)] plots of the cross correlation of a
pulse that has a cubic chirp Fs3d ­ 2.75 3 105 fs3 (a phase
shift of 60p). Oscillations are clearly visible over the en-
tire pulse (,1.2 ps).

Similar results are seen for quartic-phase profiles,
which are shown in Fig. 9. Figure 9(a) displays an ex-
perimental cross correlation (solid curve) and a theoreti-
cal intensity profile (both plotted on a linear scale) for
Fs4d ­ 1.1 3 105 fs4 (a phase shift of 40p). Good agree-
ment in the main pulse and the first sidelobe is seen, with
deviations occurring in the wings. In particular, the ex-
perimental trace shows some asymmetry. Slight oscilla-

Fig. 7. Experimental cross correlations (solid curves) and nu-
merical simulations (dashed curves) of a pulse with a cubic-phase
modulation of (a) Fs3d ­ 6 3 104 fs3 s12pd, (b) Fs3d ­ 6.0 3 105 fs3

s122pd. The effects of aliasing are clearly seen in (b).
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Fig. 8. (a) Cross correlation of a pulse with a cubic-phase mod-
ulation of Fs3d ­ 3.0 3 105 fs3, (b) semilog plot of the same pulse.
Oscillations are clearly visible over the entire pulse (,1.4 ps).

tions of the shaped pulse appear at negative time delays.
These deviations are more pronounced in Fig. 9(b), which
corresponds to a quartic phase of Fs4d ­ 1.1 3 106 fs4

(a phase shift of 400p). These asymmetries are caused
by residual cubic-phase dispersion present on the pulse
and have two causes. First, imperfect alignment of the
spectrum with the filter will necessarily result in the
introduction of lower-order terms in the phase disper-
sion, i.e., DFsvd ­ s1y4!dFs4dsv0dfv 2 sv0 2 Dvdg4 ø
Asv 2 v0d4 1 Bsv 2 v0d3, where A and B are coeffi-
cients that depend on Dv. Second, any nonlinearity in
the spatial frequency dispersion will also introduce lower
terms into the phase expansion.

5. LIMITATIONS OF DISCRETE
FOURIER-TRANSFORM PULSE SHAPING
In the previous sections, we have shown that a vari-
ety of temporal waveforms can be produced by using
ultrabroad-bandwidth pulses coupled with programmable
pulse-shaping techniques. In this section we ask, What
are the limitations that ultrabroad bandwidths impose
on pulse shaping? Large bandwidths can adversely af-
fect the quality of shaped pulses because of (i) higher-
order phase dispersion of the pulse during propagation
through the shaper, which can lead to pulse broadening
and loss of temporal resolution; (ii) higher-order spatial
dispersion of the frequency components in the Fourier
plane of the shaper, which can lead to deviations from
the ideal pulse shape; and (iii) amplitude and phase fil-
tering of the pulse from other optical elements (gratings,
mirrors) in the shaper, which can also lead to pulse broad-
ening. In this section we discuss these considerations
in shaping ultrabroad-bandwidth pulses and, in particu-
lar, examine the limits of Fourier-transform techniques
in shaping pulses on pulses with durations that are much
shorter than those used in these experiments.

A. Effects of High-Order Spectral Dispersion
First we consider the effects of higher-order phase disper-
sion on the fidelity of the shaped pulse. An ultrabroad-
bandwidth pulse that propagates through the pulse
shaper will be broadened because of the presence of an
intrinsic higher-order phase that manifests itself as a
loss of temporal resolution of the individual features of
the shaped pulse. The magnitude of this broadening de-
pends on both the amount of dispersive material present
in the shaper and on dispersive contributions from the
diffraction gratings. In principle, any residual phase
dispersion can be automatically compensated for by the
adjustment of the phases of individual modulator pix-
els (as we have done in our cubic- and quartic-phase
compensation experiments above). This permits added
flexibility both for correcting intrashaper dispersion and
correcting for an uncompensated higher-order phase that
may be present on input pulses. Nonetheless, it is use-
ful to consider to what extent intrinsic phase dispersion
broadens short pulses and to determine the pulse dura-
tions for which this intrinsic broadening can be ignored.

Any material (SLM) contributions to positive second-
order group velocity dispersion (GVD) within the shaper
can be canceled if the position of the final grating is ad-
justed. In this case, negative GVD is introduced when
the grating is moved beyond the outer focal plane of
the final mirror (see Fig. 1). However, this also intro-
duces phase dispersion at higher orders, particularly

Fig. 9. Experimental cross correlations (solid curve) and
numerical simulations (dashed curve) of a pulse with a
quartic-phase modulation of (a) Fs4d ­ 1.1 3 105 fs4 s40pd, (b)
Fs4d ­ 1.1 3 106 fs4 s400pd. The slightly asymmetric profiles
are caused by residual cubic-phase dispersion.
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cubic- and quartic-phase dispersions. Both the mate-
rial and the grating contributions can be calculated. We
can estimate the material contributions of quadratic-,
cubic-, and quartic-phase distortions by using the fiber
propagation parameter,37 bsvd ­ FsvdyL, where L is the
propagation distance, and, by using the Taylor series
expansion for the optical phase [Eq. (4)], we can write
bsndsvd ­ FsndsvdyL ­ sdnbydvndv­v0 . The derivatives
bsndsvd are given in terms of the index of refraction as

bs2dsvd ­
l3

2pc2

d2n
dl2

, (5a)

bs3dsvd ­ 2
l4

4p2c3

√
3

d2n
dl2 1 l

d3n
dl3

!
, (5b)

bs4dsvd ­
l5

p3c4

√
3
4

d2n
dl2

1 l
d3n
dl3

1
l2

4
d4n
dl4

!
. (5c)

Using a propagation length of 4.6 mm and the Sellmeier
equations for fused silica, we estimate that the SLM con-
tributes approximately 170 fs2, 2360 fs3, and 500 fs4 of
quadratic, cubic, and quartic phases, respectively. These
phases must be added to contributions from the gratings
in the shaper. Stern et al. have considered the propa-
gation of subpicosecond pulses through a generalized
pulse-shaping system that consists of two gratings and
a unit magnification pair of focusing elements (lens).38

From their analysis, the excess cubic- and quartic-phase
terms are found to be 1430 fs3 and 2640 fs4, respec-
tively. When the final grating position is set to cancel
the GVD that is due to the gratings, jFgrating

s2dsvdj ­
2jFmaterial

s2dsvdj, the residual cubic and quartic phases
can be computed as the sum of contributions from mate-
rial and gratings. We experimentally measure a grating
displacement of 600 mm from the focal plane, in rea-
sonable agreement with the calculated value of 400 mm.
Using the experimentally measured value for the grat-
ing phase, we estimate total cubic and quartic phases of
360 fs3 and 2100 fs4, respectively, of our shaper. For
reference, a cubic (quartic) phase of 360 fs3 (2100 fs4)
will broaden an 12.2-fs (4.5-fs) pulse by 1 fs. When the
condition that intrinsic phase dispersion can effectively
be neglected when Dtyt # 1.1 is imposed, higher-order
phase dispersion can be neglected for pulse durations that
exceed 12 fs. For pulses shorter than this, phase
compensation by a SLM is necessary to eliminate pulse
broadening. Note, however, that the phase dispersion
contributions from material and gratings have opposite
signs. It should therefore be possible to select the appro-
priate grating angle to cancel quadratic and cubic phases
simultaneously.38 In addition, our analysis does not take
the effect of finite beam diameter into account, which can
lead to pulse broadening across the beam radius. Such
effects can in principle be minimized by the use of a one-
dimensional spatial image inverter in a quadruple-pass
configuration,26 although complications that are due to
the presence of SLM may exist.

B. Effects of Higher-Order Spatial Dispersion
We next consider the variation of spatial dispersion in
the masking plane of the shaper and its consequence on
the shaped output pulses. The pulse shaper operates by
imposing a complex linear filter Msvd on an input field
spectrum Einsvd. However, the filtering operation is car-
ried out in real space; hence Msvd must be mapped from
space to frequency. For small bandwidths sDvyv0 ,, 1d,
dvydx is constant, and the filter is simply a one-to-one
linear map from space to frequency. For our experimen-
tal conditions, Dvyv0 ­ 0.16, and the assumption of con-
stant dispersion is invalid, as dvydx varies by 40% over
the baseband spectrum of our pulses (even though dlydx
varies by only 6%). Because we are using fixed pixel size
and spacing dictated by the physical characteristics of the
SLM, any nonlinearity in spatial dispersion represents a
deviation from the desired frequency filter.

To model the effects of spatial nonlinearity, we expand
the wavelength at the masking plane to third order in a
Taylor series:

lsxd ­ l0 1 ls1dsxdDx 1
1
2 !

ls2dsxdsDxd2 1
1
3 !

ls3dsxdsDxd3 ,

(6)

where lsndsxd ­ sdnlydxndl­l0 , l0 is the center wavelength
of the pulse, and Dx is the distance from the mask cen-
ter sx0 ­ 0d. We evaluate the wavelength derivatives
by considering the geometry of the shaper. Referring to
Fig. 10, let f be the grating distance from the focusing op-
tic and V ­ ud 2 ud,0 be the difference angle between l

and l0. The position of l at the masking plane is given
by

x ­ f tan V . (7)

The relationship between V and l is obtained from the
first-order grating equation:

dfsin ui 1 sinsV 1 ud,0dg ­ l . (8)

From Eqs. (7) and (8) and their respective derivatives,
complicated expressions for the wavelength derivatives
dnlydxn can be found at arbitrary V. However, when
evaluated at V ­ 0 sl ­ l0d, the expressions simplify
considerably:

Fig. 10. Geometry for calculating the effects of higher-order
spatial dispersion in the masking plane.
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√
dl

dx

!
l0

­
d cos ud,0

f
, (9a)√

d2l

dx2

!
l0

­ 2
d sin ud,0

f 2
, (9b)√

d3l

dx3

!
l0

­ 2
3d cos ud,0

f 3
. (9c)

For our experimental parameters, we find that dlydx ­
11.76 nmymm, d2lydx2 ­ 25.02 3 1022 nmymm2, and
d3lydx3 ­ 22.26 3 1023 nmymm3, respectively. In
Fig. 11 we plot the position-dependent wavelength by
using Eq. (7) (solid line). For comparative purposes,
both the linear spatial dispersion (dashed line) and the
exact position calculated with Eqs. (8) and (9) are shown.
Several features are apparent. First, the deviation from
linearity is negligible (,5%) over a bandwidth of 120 nm,
approximately the baseband spectrum of our pulses.
Second, there is no difference between our derived third-
order result and the exact position over 400 nm of
bandwidth. This is shown clearly in the inset, which
is a blowup of the bottom left-hand corner. Thus we can
make an accurate assessment of the effects of nonlinear
spatial dispersion on optical pulses with bandwidths that
near the single-cycle limit sDvyv0 , 0.3d by using the
third-order expansion.

It is crucial to note that, although the wavelength dis-
persion is nearly linear, the frequency dispersion is in fact
quite nonlinear. This is shown clearly in Fig. 12. We
note that a shaper that possesses a purely linear spa-
tial wavelength dispersion over hundreds of nanometers
of bandwidth will necessarily possess a significant amount
of nonlinear frequency spatial dispersion. For a device
that has a fixed pixel size (such as a liquid-crystal SLM),
this results in a variation in the amount of frequency that
is transmitted through each pixel. Rigorously, the spec-
tral filter including nonlinear dispersion is given by39

Msvd ­

√
2

pw0
2

!1/2 Z
dxMsxdexp

(
22sx 2 f fvgd

w0
2

)
,

(10)
where M(x) is the physical mask, w0 is the electric-field
radius at the masking plane, and the nonlinear spatial
dispersion is

f svd ­
dx
dv

v 1
1
2!

d2x
dv2

v2 1
1
3!

d3x
dv3

v3 1 · · · . (11)

For a discrete N pixel filter, the physical mask can be
written as12

Msxd ­

24Csxd
N /221X

n­2N /2

dsx 2 ndxd

35 p rect

√
x

dx

!
, (12)

where C(x) is the continuous spatial mask that corre-
sponds to the desired frequency filter, assuming linear
spatial dispersion, dx is the physical width of the pixel,
the function rectsxd ­ 1 for jxj # 1y2 and 0 otherwise, and
* is the convolution operator. With Eqs. (10) and (12),
under the assumption that the field radius (spot size) at
the masking plane is much smaller than the pixel width
(as in our case), the spectral filter becomes
Msvd ­

8<:Cf f svdg
N /221X

n­2N /2

df f svd 2 ndxg

9=; p rect

"
f svd
dx

#
.

(13)

From Eq. (13), two features are noteworthy. First, the
delta-function terms explicitly show that the frequency
is not sampled at equal intervals. Second, as f svdydx
varies with frequency, the amount of transmitted fre-
quency per pixel is not constant.

To examine these effects on the fidelity of shaped
ultrabroad-bandwidth pulses, we have performed simula-
tions on pulses with 5-fs duration in which the nonlinear
spatial dispersion is incorporated in the filtering process.
We first compute the continuous spatial filter C(x) that
corresponds to our desired frequency filter under the as-
sumption of a purely linear frequency-space map. The
actual frequency-dependent filter Msvd that samples the
pulse spectrum [Eq. (13)] is constructed by the mapping
of space to frequency (including nonlinear spatial disper-
sion) directly from the wavelength expansion [Eq. (6)] and
vsxd ­ 2pcylsxd. We include the effect of pixelation by
discretizing and sampling the input field spectrum at the
128 appropriate points in frequency space according to
Eq. (13). This corresponds to a frequency range (at the
center frequency v0d of 2.5 THzypixel and a corresponding

Fig. 11. Spatial wavelength dispersion in the masking plane
of the shaper, showing linear dispersion (dashed curve) and
third-order dispersion (solid curve). The exact position of the
wavelength in the masking plane is identical to the third-order
result over this wavelength.

Fig. 12. Spatial frequency dispersion in the masking plane of
the shaper, plotted in angular terahertz, obtained from the
third-order wavelength result. FWHM bandwidths for 21, 10,
and 5 fs are shown for reference.
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(linear) temporal window of 400 fs. The shaped intensity
profile of the pulse is computed by30

I std ­
1

s2pd2

Z
dv0 expsiv0td

Z
dvEout svdp

3 Eoutsv 1 v0d , (14)

where the shaped field is given by Eoutsvd ­
EinsvdMfvsxdg. For these simulations, we use a
Gaussian intensity spectrum of the form Iinsvd ­
E0

2 exps24 ln 2 v2yDvFWHM
2d where Dv ­ 88 THz and

corresponds to a 5-fs pulse. To model the finite spatial
extent of our hypothetical SLM, the intensity spectrum is
truncated at four e-foldings. In this manner, ringing and
feature broadening associated with hard spectral aper-
tures are minimized. hHowever, because the wavelength
dispersion [Eq. (6)] was computed with the parameters of
our current shaper, the physical size of our hypothetical
SLM must be ,40 mm to accommodate this bandwidth.j
Three representative filters are considered in our simu-
lations: a double-slit amplitude filter, an M-sequence
phase filter, and sinsvdyv phase and amplitude filter.

Results for the double-slit filter are shown in Fig. 13.
Selecting two separate, phase-locked portions of the spec-
trum results in a temporal beat note with a period that
corresponds to the inverse mean frequency separation of
the spectra. For ordinary (linear) filtering, the width of
the temporal envelope would correspond to the inverse
of the transmitted frequency range of the slit. In each
of these simulations, the spatial filter was constructed
to have slits of equal physical width centered about
the physical position of the central wavelength. When
transformed into frequency space, the spatial nonlinearity
asymmetrically positions the slits with respect to the spec-
trum. In addition, the amount of transmitted frequency
range is different in each slit. Figure 13(a) displays the
computed output temporal profile for a mean frequency
separation of 66.8 THz, which corresponds to a pulse
period of 15 fs. In this simulation, the left (right) slit
was positioned at 26 mm (6 mm) with widths of 2 mm.
The transmitted frequency range through the left (right)
slit was 13.6 THz (9.4 THz). The width of the temporal
envelope is 78 fs, which is nearly the value expected for
the wider slit width of 13.6 THz. A series of isolated
pulses are seen, and pulse positions correspond to their
expected values. Figure 13(b) displays the output pulse
profile for a mean frequency separation of 138.1 THz and
a pulse spacing of 7.2 fs. Here, the left (right) slit was
positioned at 212 mm (12 mm) with widths of 6 mm, and
the transmitted frequency range through the left (right)
slit was 52.3 THz (22.6 THz). Again we find that the
pulses are isolated in their appropriate positions with a
temporal envelope width of 27.5 fs.

In Fig. 14, results for a length 7 M-sequence with a
5.0-fs input pulse are shown for a dF ­ 62.5 THz train.
The M-sequence was discussed in Section 3 above and
has been previously used for shaping pulse trains.30 For
these simulations, Df ­ 1.1p and six repetitions of the
M-sequence spanned the spectrum. The quality of the
synthesized pulse train has degraded with respect to a
train simulated assuming purely linear frequency dis-
persion (shown as the offset dashed curve). The central
pulse in the train maintains its width, but the temporally
shifted pulses are broadened by as much as a factor of
2 and deteriorate beyond the third pulse in the trains.
Evidence for this is present in our experimental cross cor-
relations of a 23.5-THz train shown in Fig. 6(c).

Finally, in Fig. 15 we display simulations for tem-
poral square pulses of 50-, 100-, and 300-fs durations.
Here the filter chosen was sinspxyx0dyspxyx0d with x0 ­
fT sdnydxdn­n0 g21, where T is the duration of the square
pulse and sdnydxdn­n0 is the frequency dispersion at the
center frequency of the pulse. Again, ideal square pulses
are shown as the offset dashed curve. For the 50-fs
square pulse [Fig. 15(a)], slight deviations appear along
the leading and the trailing edges of the pulses, including
a 15% overshoot of the main plateau and a slight broaden-
ing of the rise and fall time from 5 to 8 fs. Both of these
effects grow as the square pulse duration is increased,
with a 100- (300-) fs square pulse [Figs. 15(b) and 15(c)]
suffering a 13- (25-) fs broadening and a 25% (34%) over-
shoot of the main plateau. In the case of the 300-fs pulse,
ringing appears on both the leading and the trailing edge
of the pulses. In all cases, however, the overall character
of the square pulse is preserved.

Our simulations suggest that although nonlinear spa-
tial effects play a minimal role in simple filters (such as
double slits) on 5-fs time scales, they can affect the fi-
delity of complicated waveforms (such as square pulses)
and in the worst case render a seriously degraded wave-
form (as evidenced in our simulations of M-sequence fil-
ters). Specifically, as the square pulse illustrates, the
quality of the pulse degrades with increasing waveform
duration. One possible cause of these effects can be un-

Fig. 13. Numerical simulations of (a) 66.8-THz, (b) 138.1-THz
pulse trains that incorporate the effects of higher-order spa-
tial dispersion, assuming a transform-limited 5-fs input pulse.
These trains were synthesized by the use of an amplitude mask
that consisted of two slits of equal spatial dimension centered
about x ­ 0 in the masking plane.
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Fig. 14. Numerical simulation of a 62.5-THz pulse train (solid
curve) that shows the effects of higher-order spatial dispersion,
synthesized with a length 7 M-sequence phase mask. The fi-
delity of this train is significantly degraded with respect to a
train synthesized assuming only linear frequency dispersion in
the masking plane (dashed curve).

derstood by considering the variance of the transmitted
frequency as a function of pixel position. For a filter
with purely linear spatial dispersion (assuming w0 ,, dxd,
the temporal window available for shaping is given by
1ydv, where dv is the transmitted frequency per pixel.
For large bandwidths, however, 1ydv varies considerably
over the pulse bandwidth. In our simulations, 1.4 THz ,

dv , 3.7 THz at two e-foldings, which effectively reduces
the shaping window to ,270 fs. Moreover, the simulated
M-sequence pulse train displays degradation well within
the 270-fs window, indicating that nonlinear sampling
plays an important role. Because the M-sequence train
is constructed by the phase shifting of specific frequencies
to interfere constructively at the appropriate pulse posi-
tions, incorrect sampling of the frequency will compromise
the interference and necessarily degrade the waveform.
Therefore, for the most general waveform, the effects of
nonlinear spatial dispersion will need to be compensated
for. If the optical bandwidths of the pulses are known a
priori, this could be accomplished in systems that utilize
fixed masks simply if the filter is designed to incorpo-
rate the frequency dispersion directly. This has the dis-
advantage of the need to fabricate, replace, and realign a
new mask for each new set of waveforms. Similarly, one
could design a pixelated SLM device that exactly incorpo-
rates the frequency-to-space nonlinear mapping by having
unevenly spaced pixels with varied physical dimensions
such that the amount of frequency transmitted per pixel
is constant over the entire bandwidth of the pulse. This
would require the fabrication of a specialized device. A
third possibility is to increase the frequency resolution by
increasing the number of pixels. This, however, presents
disadvantages in any implementation. In an SLM, the
decreased pixel size would result in a filter that convolves
the desired filter with the intensity profile of the input
beam.39 An acousto-optic modulator14 would overcome
this problem by virtue of its quasi-continuous pixelation.
However, the wavelength variation of the Bragg diffrac-
tion angle and diffraction efficiency that necessarily ac-
company ultrabroad-bandwidth pulses would need to be
addressed before this method could be applied. A fourth
possibility is simply to assign the correct phase to the ap-
propriate (nonlinear) spatial position. This guarantees
that the spectrum is sampled correctly.

C. Effects Of Extraneous Amplitude Filters
Finally, we briefly consider amplitude filtering ef-
fects that can compromise the fidelity of shaped wide-
bandwidth pulses. Some amplitude shaping can be ex-
pected by the diffraction gratings within the shaper, as
diffraction efficiency varies both with wavelength and po-
larization. We have not characterized the spectral trans-
mission of our shaper; however, we note that for 13-fs

Fig. 15. Numerical simulations of (a) 50-fs, (b) 100-fs, (c) 300-fs
square pulses (solid curve) synthesized with sinspxyx0dyspxyx0d
phase and amplitude filters. For comparison, ideal square
pulses (dashed curve) synthesized assuming linear frequency
dispersion are also displayed.



Efimov et al. Vol. 12, No. 10 /October 1995 /J. Opt. Soc. Am. B 1979
pulses, these effects are minimal based on our measured
unshaped cross correlations. For shorter pulses with cor-
respondingly broader bandwidths, these effects may be-
come important, particularly if the shaper is operated in
a multipass configuration. Typically, grating efficiencies
can be as broad as several hundred nanometers for high
groove-density gratings. However, grating bandwidths
diminish as groove density decreases and may present
problems for pulses with durations that approach single-
cycle limits.

6. CONCLUSION
We have demonstrated that spectral domain femtosec-
ond pulse-shaping techniques can be easily applied to
ultrabroad-bandwidth pulses with durations as short as
13 fs. A variety of temporal profiles has been generated
by the use of a programmable spatial light phase modu-
lator within a dispersion-free pulse-shaping apparatus.
Although we have performed phase filtering in these ex-
periments, amplitude and combined phase and amplitude
filtering should be possible with similar temporal reso-
lution. We have also demonstrated the feasibility of us-
ing a SLM-based shaper as a high-order phase disper-
sion compensator for ultrabroad-bandwidth femtosecond
pulses. From the numerical modeling of the effects of
phase dispersion and spatial dispersion within the shaper,
we conclude that these methods can be extended to pulses
with durations that approach a single optical cycle, pro-
vided that filters that adequately account for the nonlin-
ear spatial dispersion in the masking plane are designed.
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