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ABSTRACT

We review the organizational principles of the cortical vasculature

and the underlying patterns of blood flow under normal conditions

and in response to occlusion of single vessels. The cortex is sourced

by a two-dimensional network of pial arterioles that feeds a three-

dimensional network of subsurface microvessels in close proximity

to neurons and glia. Blood flow within the surface and subsurface

networks is largely insensitive to occlusion of a single vessel within

either network. However, the penetrating arterioles that connect the

pial network to the subsurface network are bottlenecks to flow;

occlusion of even a single penetrating arteriole results in the death of

a 500 lm diameter cylinder of cortical tissue despite the potential

for collateral flow through microvessels. This pattern of flow is

consistent with that calculated from a full reconstruction of the

angioarchitecture. Conceptually, collateral flow is insufficient to

compensate for the occlusion of a penetrating arteriole because

penetrating venules act as shunts of blood that flows through

collaterals. Future directions that stem from the analysis of the

angioarchitecture concern cellular-level issues, in particular the

regulation of blood flow within the subsurface microvascular

network, and system-level issues, in particular the role of

penetrating arteriole occlusions in human cognitive impairment.
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The vasculature of the brain is tasked with the immense role

of nurturing some one-hundred thousand energy-hungry

neurons for every microliter of cortical tissue. To do so, it

relies on a uniquely organized topology that leaves no

portion of tissue without perfusion, with every neuron lying

at most 15 lm of a brain capillary [86]. Here, we review a

body of work on understanding the structure and function of

the cortical vasculature, with ideas relating these discoveries

on the rodent vasculature to human physiology. Our

presentation is based on a lecture at the 2014 Microcircu-

latory Society President’s Symposium. In keeping with the

focused nature of that presentation, there is no pretense of

historical perspective nor encyclopedic review. Further, we

have stripped the presentation of a discussion of technical

developments that fueled these results; these are reviewed

elsewhere [44,45,79,81,87].

What are the issues that make the study of brain

vasculature both interesting and challenging? First, we

suggest, there is the need for dynamic allocation of resources,

that is, oxygen and nutriments, to brain cells. Blood is a

limited resource, yet neural function depends on adequate

flow. In particular, the pioneering work of Fox and Raichle
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[26] suggest that there is not enough blood to go around if all

areas of the cortex were activated at once. To achieve this

dynamic allocation, there is a coupling of blood flow with

neuronal energetics and electrical activity [3,38,74]. The

correlation is imperfect, with poorly understood relation-

ships between flow, oxygenation, and neural activity [43].

Nonetheless, this coupling permits fMRI [50,68] to be used

to study brain function in humans, a necessity for addressing

many issues in cognition. Next, neuronal and vascular

development appear to follow a similar plan and are linked

by common genomic markers that control the fate of both

systems [13]. Finally, there is strong if only partially

understood coupling between neuronal and vascular dys-

function [28]. In particular, vascular disease leads to

neurological decline and diminished cognition and memory

[29].

CORTICAL ANGIOARCHITECTURE IS
ORGANIZED INTO THREE TIERS

A single microliter of cortex holds nearly 1 m of total

vascular length [10]. Though densely packed, the vasculature

can be organized into three distinct topological tiers that

blood must pass through to supply the brain. These tiers

consist of the pial surface arteriole and venule networks, the

subsurface microvascular network, and the penetrating

arterioles and venules that bridge the surface and subsurface

networks (Figure 1).

In the first tier, a plexus of arteries and arterioles that

collectively occupy the territory of the MCA overlays the

surface of about half of neocortex [55,76]. The MCA

originates from the circle of Willis at the base of the brain

and extends over the cortical mantle as a network of two-

dimensional loops. These loops are formed when branches of

the MCA connect through anastomoses [9,15]. Penetrating

arterioles branch from the surface arterial network and

plunge perpendicularly into cortex [6,66]. The vast majority

of penetrating arterioles are singular offshoots that do not

branch further on the pial surface before entering the brain

[9]. This is an important geometrical feature that ensures

each penetrating arteriole can be sourced by two potential

inputs within a vascular loop. As penetrating arterioles

descend into the cortex, they gradually ramify into precap-

illary arterioles that, in turn, feed into the subsurface

capillary network.

The capillary bed comprises a three-dimensional network

[10]. All cerebral blood flow must pass through this network

in order to exit the brain, as there are no direct arteriole to

venule anastomoses in the healthy brain. The density of the

capillaries is largely homogeneous along varying depths of

the cortex, even though the density and composition of cells

varies greatly over the cortical thickness [86,94].

Finally, blood exits the cortex through a venular system

that is similar to the arterial system. Penetrating venules

receive blood from postcapillary venules that drain the

subsurface microvascular network and run perpendicular to

the brain surface [63]. After exiting the parenchyma, blood

flows through a tree-like venular surface network and finally

drains into the central sinus [55,76].

Robust Blood Flow Through the Pial Network
A detailed analysis of the pial angioarchitecture was created

from images of surface vessels that were filled with a gel

linked to a fluorescent dye [9]. We mapped the location of all

1 mm

Surface arteriole

Subsurface
microvessels

Penetrating arteriole
Columnar boundary

Surface venule

Penetrating venule

Activity-induced
deoxygenation

Figure 1. A vectorized data set of all vascula-

ture in a block of parietal cortex that encom-

passes the primary vibrissa representation. The

block is 2 9 3 9 1.2 mm thick. Surface and

penetrating arterioles are colored red, venules

blue, and the borders of cortical columns

denoted by a golden band. A map of brain

activity is superimposed. It was obtained using

intrinsic optical signal imaged through a

thinned-skull window. The animals were anes-

thetized with isoflurane so that only a net

deoxyhemoglobin signal is observed by reflec-

tance of 625 nm light when individual vibrissae

were deflected at 10 Hz for four seconds. The

responses from all columns were normalized in

amplitude and thresholded to avoid spatial

overlap, and are superimposed on the vector-

ized data set. This new data were obtained

using the methodology in Blinder et al. [10].
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vessels and found that an interconnected backbone of vessels

spans the full territory of the MCA (black overlay on green,

Figure 2A). This angioarchitecture provides multiple paths

for the supply of blood to any penetrating arteriole. This

implies that blood flow can be redistributed to areas of need

from areas of excess; such a redistribution could not occur

with a tree-like branching pattern.

Does the observed architecture support the redistribution

of blood over the cortical mantle in response to a “hot spot”

of neuronal activation? To test this possibility, we stimulated

the forepaw of an anesthetized animal so that the contrast in

activity between the core region of somatotopic activation

and the surrounding regions is particularly large (left and

middle of Figure 2B). Optical imaging with in vivo TPLSM

[46,85] enables the diameter of the lumen to be observed. We

found that there is a local dilation of arterioles at the center

of the electrophysiological response [18]. Yet as one moves

away from the center, the vascular response is dominated by

an average constriction rather than dilation (middle and

right of Figure 2B). This center-surround effect suggests that

the network of arterioles on the pial surface shunts blood

flow from inactive to active brain areas through active

dilation and constriction.

These above findings indicate that vascular tone has local

control in addition to pial-wide control during functional

hyperemia [32]. The mechanism for the spatiotemporal

coordination of arteriolar reactivity is incompletely under-

stood, but it is likely to involve conduction of a parenchymal

response to the pial network through vascular endothelial

gap junctions [4] with an approximately 2 mm electrotonic

length along the endothelial cells that form a vessel [77]. The

endothelial response results in either dilation or constriction

by engaging distinct myoendothelial signaling cascades [19].

Since a multitude of penetrating arterioles exist along a single

branch of the MCA, different regions of cortex can be seeded

with either dilatory or constrictive signals and, in principle,

this can result in a center-surround shift in the spatial pattern

of blood flow.

Beyond issues of dynamic reallocation of blood, the high

interconnectivity of the surface network should make the

distribution of blood relatively insensitive to blockages of a

single surface vessel. To test this hypothesis, we used TPLSM

to track the speed of RBCs [46] and used focused excitation

of a photosensitizer, transiently introduced into the blood

stream, to form a clot at a vessel of interest [75] (Figure 2C).

Immediately after the clot is formed, we find a reversal in the

direction of flow of one of the pair of proximal downstream

vessels [75], such that the magnitude of the flow remains

roughly unchanged even though the direction of flow has

flipped. Thus, the ability of the surface network to source

blood to neocortex is unaffected by a single localized defect.

Before moving on, we consider the role of the pial

arterioles in distributing blood to the penetrating arterioles

during a transient blockage of the MCA, a model of stroke

[56,96]. We find that the available blood is homogeneously

distributed to all penetrating arterioles as flow is diminished

[80], as opposed to creating patches of cortex with flow

versus no-flow. Thus the maintenance of flow homogeneity

in penetrating arterioles as a population also relied upon the

ability of the pial network to redistribute blood, which also

involved reversals of flow in anterior cerebral artery collat-

erals as well as in smaller collaterals between major MCA

branches (Figure 2A). In fact, recent studies show that stroke

severity can be predicted by the extent of vascular collater-

alization from animal to animal [12].

Dynamic Changes in Pial Vessel Diameter are
Modest in Extent
We observed changes of 5% in the diameter of pial vessels

during sensory stimulation of anesthetized animals [17,18]

(Figure 2B). This number is small, suggesting that regulation

makes only a modest difference in vasodynamics. Does the

fractional change hold up in awake animals? We address this

issue in awake, head-fixed mice in which vasodynamics are

measured through a transcranial window [23] (Figure 3A).

Sensory simulation, in this case, an air puff to the vibrissae,

leads to changes in the diameter of the pial arterioles of at

most 40% (Figure 3B). Interestingly, there is also spontane-

ous vasodilation, referred to as vasomotor events [54], whose

maximal dilation is similar in size [23] (Figure 3C). These

spontaneous events occur over time scales of seconds to tens

of seconds and involve changes in vascular smooth muscle

calcium signaling and other components that may control

vascular tone [62]. The essential issue is that changes in

diameter of pial vessels are modest in extent in comparison

with the many-fold increases that are seen in the vasculature

of peripheral muscles through capillary recruitment [35].

It is noteworthy that the magnitude of arteriolar dilations

measured in vivo rarely exceeds a 40% increase from baseline.

This apparent limitation exists regardless if an animal is

awake or under anesthesia, or if the dilation is evoked by

sensory input or part of an ongoing vasomotor oscillation.

Exogenous manipulations, such as isoflurane inhalation [41]

or shock [42] can drive an increase in the diameter of

arterioles in excess of 40%, but under physiological condi-

tions, a homeostatic mechanism may exist to prevent over-

distention of the arteriole wall.

Subsurface microvessels show both stimulus-activated and

spontaneous changes in the speed and flux of RBCs [46].

Interestingly, the flow of RBCs rarely transitions from

moving to stalled [46,91]. All told, since blood in all

arterioles and all capillaries is flowing at all times under

normal conditions, there is no reserve of vascular volume to

be filled by increased flow in upstream arterioles. This may

ensure that the brain does not swell beyond the capacity of

the intracranial space. Further, the consistency of flow and

A.Y. Shih et al.
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Figure 2. The pial surface forms a two dimensional network. (A) Representative example of a complete tracing of the vasculature fed by the MCA. Parts

that form loops are highlighted with black edges and red vertices, while nonbackbone offshoots are shown in green. Adapted from Blinder et al. [9]. (B).

Stimulation of the footpad in the alpha-chloralose anesthetized rat leads to local dilation but surrounding constriction of surface arterioles. Data in the left

panel show the evoked neuronal response, using ball electrode measurements of surface potentials, compiled from nine different locations. The strongest

amplitude and fastest rise time was marked as the center of the receptive field. The middle panel shows a vascular map with the center of the receptive

field marked by a blue circle and arteriolar diameter change as a function of time and distance from the center. All data are shown as a fractional change

relative to the baseline, that is, Dd/d, and dilation and constriction are plotted upward and downward, respectively. The right panel is an average of

arteriolar diameter changes within 0.5 mm from the center of neuronal response (blue), in a 0.5–1.5 mm annulus around the center (green) and 1.5–
2.5 mm ring around the center (red) for all data from this animal. Adapted from Devor et al. [18]. (C) Occlusion to a single surface arteriole leads to

reversal of flow in the immediate downstream vessel and mild adjustment of flow in all branches. Data from rat anesthetized with urethane. On the left

and right are in vivo two-photon images taken before and after photo-thrombotic clotting of an individual vessel, respectively. Left-center and right-center

are diagrams of the surface vasculature with RBC speeds and directions indicated. The yellow “X” indicates the location of the clot, and vessels whose

flow direction has reversed are indicated with red arrows. Adapted from Schaffer et al. [75].
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the observation that changes in flow are not too great

suggests that a linear analysis of flow based on a fixed

angioarchitecture should have utility in predicting flow

patterns.

Robust Aspects of Subsurface Blood Flow
The reconstruction of the microvasculature across many

microliters of tissue (Figure 1) may be analyzed to

determine the topology of the subsurface microvasculature

(Figure 4A). Like the pial vasculature, we observe loops,

albeit composed of a greater number of branches than

those on the surface (Figure 4B). This finding suggests that

flow in the subsurface vasculature should also be relatively

immune to occlusion to a single vessel. We used a

sensitizer-free, nonlinear optical technique to injure the

endothelium and trigger clotting in a targeted subsurface

vessel [67]; nonlinear interactions are required so that light

is not absorbed above or below the targeted vessel. We

observed highly reduced flow in the proximal downstream

vessel, as opposed to the immediate recovery for surface

loops (cf., Figures 2C and 4C), yet there was substantial

recovery by three vessel branches downstream (Figure 4C).

Further, histological analysis of the tissue indicates that

there is essentially no neuronal damage in terms of markers

of hypoxia or neuronal structure [67,78]. We conclude that

clots targeted to single vessels in either surface or

subsurface networks cause negligible ischemia or damage

to neurons. This occurs as a consequence of redundant

flow pathways.

Penetrating Vessels are a Fragile Link in the
Sourcing of Blood
Penetrating vessels deliver blood from the surface network

to subsurface microvessels. They are interconnected by way

of the dense microvasculature (Figures 1 and 4A), but do

not connect with each other through direct subsurface

collaterals [10] (Figure 5A). Thus, it is not obvious whether

the loss of flow to a penetrating vessel would terminate all

flow to the tissue volume perfused by the vessel. On the

one hand, penetrating vessels deliver, on average, a median

flux of blood into the brain that is seventy times the mean

flux through an individual capillary [78]. Yet the multitude

of capillaries suggests that collateral flow could compensate

for the absence of a penetrating vessel. To observe what

actually occurs for this critical case, we made use of our

previous technique of blocking flow in pial vessels

(Figure 2C), but this time directed at the entry point

where a penetrating arteriole plunges into cortex (Fig-

ure 5A). We measured the change in the speed of RBCs in

downstream vessels as a function of lateral distance for the

site of occlusion (Figure 5B). We found that the speed, and

thus flux of RBCs, goes to zero in downstream vessels that

lie distal to the occlusion and does not fully recover until a

radius of about 250 lm from the occluded penetrating

arteriole [64,66]. Thus, the loss of flow to a single-

penetrating arteriole leads to an acute loss of perfusion in a

columnar region that spans approximately 500 lm in

diameter.
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Figure 3. Stimulus driven and spontaneous vascular dynamics in the

cortex of awake mice have similar amplitudes. (A) Schematic of the

experimental setup. The awake mouse is head-fixed and sits passively in

an acrylic cylinder beneath the two-photon microscope. Air puffers for

sensory stimulation are aimed at the vibrissa and, as a control, at the tail.

(B) Example of evoked and spontaneous diameter change for a 30 second

stimulus. (C, D) Relationship between peak value of the dilation and vessel

diameter. Data for arteries is in red and for veins is in blue. Grey area

shows the 0.2-lm resolution limit of detectable changes. (C) shows the

peak averaged dilation responses in the first 1–10 seconds of a

30 seconds vibrissae stimulation; the regression line has a statistically

significant slope of �0.007/lm. (D) shows the peak of spontaneous

dilation; the regression line has a statistically significant slope of �0.004/

lm. The regression for veins (not shown) is not significantly different from

zero in either case. Adapted from Drew, Shih, and Kleinfeld [23].
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BIOMEDICAL CONSEQUENCES OF THE LOSS
OF ONE PENETRATING ARTERIOLE

What are the chronic consequences of the loss of perfusion

from a single penetrating vessel? A simple but telling

measurement in the rodent is to probe for ischemic

spreading depression, that is, a front of potassium and

glutamate that depolarizes neurons and further contributes

to stroke damage [59]. These measurements make use of a

fluorescent indicator of intracellular calcium as a proxy for

electrical depolarization [30] (Figure 6A), yet are qualitative

in the sense that the onset time of spreading depression is

unpredictable. Nonetheless, in a significant number of cases

we see a slowly propagating front of depolarization followed

by inactivity (Figure 6B).

A gold standard of neurological damage is the presence of

an infarct [7]. In sub-acute stages of stroke, the infarcted

region is filled with phagocytic inflammatory cells. As such,

we repeated the procedure of occluding a single penetrating

vessel in mice that expressed GFP in microglia/monocytes.

Further, we used transcranial illumination to obviate the

possibility that a chronic cranial window compromise the

data by spuriously increasing cortical inflammation. [22]

(Figure 6C). When the animals are sacrificed six days later, we

observe a cylindrical region of infarcted tissue, highlighted by

microglia and monocytes that have swarmed into the region

[22] (Figure 6D). The diameter of the cylinder is approxi-

mately 500 lm, the same as the region of acute loss of flow.

The microinfarcts caused by occlusion to a single

penetrating arteriole (Figure 6D) are several orders of

magnitude smaller than the infarcts seen in experimental

strokes caused by occlusion of the MCA [96]. Therefore, it

stands to question whether such small lesions could generate

a perceptible deficit in brain function. We distilled the

behavioral deficit imparted by a single microinfarct [78] with

the use of a refined version of the gap-crossing task of

Hutson and Masterton [36]. Here, a rat uses a single vibrissa

to sense, in the dark, the presence or absence of a platform

that is across a gap. The occlusion was strategically generated

in a penetrating arteriole that was centered in a cortical

column that receives input from that single vibrissa. We

found that the microinfarct led to an altered decision on

whether to navigate the gap, implying that the rat lost the

capability to make a specific sensorimotor decision [78].
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Related studies in mice suggest that microinfarcts exert a

diaschisis that impairs neural excitability well outside the

region of tissue infarction [2].

CALCULATED VERSUS MEASURED FLOW
AFTER AN OCCLUSION

The complete reconstruction of microliter volumes of

neocortex (Figure 1) allows us to calculate the expected

change in flow after occlusion of a vessel and compare the

calculated change against measured values. This serves as a

test of self-consistency between two independent approaches,

that is, flow measurements versus computations based on

structural measurements. Each vascular junction is con-

nected to three others by vessels of known median radius and

length (Figure 7A). A single number, the resistance of the

vessel to the flow of RBCs, characterizes the vessel and is

based on the formula of Pries and Secomb [72] (Figure 7B;

dashed line is the curve expected for water). We then apply

Kirchhoff’s law to each junction and use known values for

the inlet pressure to surface arterioles to calculate the flux

through every vessel [10]. Our first numerical experiment is

to determine the volume of cortex that receives the major

fraction of perfusion from a given penetrating arteriole. We

find a linear relation between the calculated volume and the

flux of RBCs through the penetrating arteriole over two-

orders of magnitude of flux (Figures 7C and 7D). The

observed linearity is consistent with the fully connected

nature of the subsurface microvasculature, while the scatter

in the calculated values reflects the random pattern of

subsurface connections (Figure 4A and B). Critically, the

volume of a cyst formed by blockage of a single penetrating

vessel (Figure 6D) coincides with the volume of perfusion

(Figure 7D). This establishes the notion of a territory of

perfusion for each penetrating arteriole. These territories are

unrelated to the columnar organization of neuronal afferents

[10].

Our second numerical experiment addresses the cata-

strophic loss of perfusion in the vicinity of an occluded

penetrating arteriole. We calculate the change in RBC flux,

and accompanying speed, in microvessels downstream of the

occluded arteriole in terms of branch number (Figure 7E).

There are no free parameters in the calculation. As an average

over all penetrating vessels in all reconstructions, we observe

that the median value of the speed recovers to half of the

preocclusion value by six downstream branches [10] (D6 in

Figure 7F). These calculated values are compared with

measurements of the decrement in preocclusion speed as a

function of the branch order away from an occluded

penetrating vessel [64] (cf., yellow/green and red diamonds

in Figure 7E). The midpoint of the recovery matches and the

overall shape of the curves are consistent; the mismatch for

branches D1–D4 occurs since the calculated speed cannot go

to zero in our linear analysis. We argue that this analysis

supports the role of linear analysis for modeling blood flow.

Insight into the Lack of Collateral Flow
The above numerical analysis establishes self-consistency, yet

gives little insight into the reason why collateral flow through

microvessels does not counter the loss of perfusion through

the penetrating arteriole. Motivation for a simplified model

comes from the anatomical drawings of retinal vasculature by
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and venules (blue) and the continuous microvascular network (gray).

Adapted from Blinder et al. [10]. (B) The fraction of speed in neighboring

microvessels that lie in cortical layers two and three after an occlusion to a

single microvessel, relative to that before the occlusion. Only some of the

data point could be specified in terms of downstream branch number, as

shown. The thick red line through the data is the smoothed response

averaged over a window that included 50 points, with �1 SEM limits

indicated by the thin red lines. The data are averaged over 16 networks.

Adapted from Nishimura et al. [66].
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Snodderly, Weinhaus, and Choi [83], which shows that the

blood supply to a disk of microvasculature is sourced and

sunk by radial, alternating penetrating arterioles and

penetrating venules. We thus consider a two-dimensional

rhombic lattice, with the observed ratio of two penetrating

venules to one penetrating arteriole, as a model of neocortical

vasculature [10] (Figure 8A). We take penetrating arterioles

as ideal pressure sources, penetrating venules as grounds, and

replace individual microvessels with the Th�evenin resistance

between distant junctions; this ignores the resistance of

penetrating vessels, which is half that of the Th�evenin

resistance. Blockage of a penetrating arteriole leads to an

unperfused hexagon of tissue as flow through the microvas-

cular network toward the region of the occlusion is shunted

through the penetrating venules (Figure 8B). Similarly,

blockage of a penetrating venule leads to an unperfused

hexagon of tissue as the removal of a sink raises the

impedance of flow into the region (Figure 8C). This model

highlights why blockage of any penetrating vessel leads to an

infarct through a lack of flow, with good agreement between

theory and experiment especially considering the brutal

nature of approximations (Figure 8B and C). The inability
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Figure 6. Occlusion to one penetrating arteriole results in neuronal death and formation of a cyst. (A) In vivo two-photon imaging of neuronal activity in

the forelimb region of somatosensory cortex of an a-chloralose anesthetized rat that was loaded with the [Ca2+] indicator OGB1-AM and the astrocyte-

specific dye SR101. The single penetrating arteriole marked by a yellow “X” was occluded. (B) Wave of cortical spreading depression, propagating at

46 lm/sec, observed by in vivo [Ca2+] imaging (yellow dashed line) about 30 minutes after occlusion of the penetrating arteriole (yellow arrow, left).

(A, B) adapted from Shih et al. [78]. (C) Maximal projection through a 200-lm depth of a Cx3cr1eGFP/+ mouse cortex before (left) and 100 minutes after

(right) occlusion of a single penetrating arteriole using targeted optical activation of the photothrombotic agent Rose Bengal (arrow) made one day after

implantation of a transcranial window [22]. Dashed lines indicate the boundaries of the penetrating artery in which flow was blocked (yellow “X”).

(D) Extent of the infarct, for the same mouse as in (C), visualized six days after the optically generated stroke. The bright green fluorescence indicates the

invasion of eGFP-labeled microglia into a cyst of necrotic tissue. Adapted from Drew et al. [22].
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for the vasculature to compensate for flow loss to the regions

of an occluded penetrating vessel is a key fragility in an

otherwise remarkably robust system [64,66].

SYNOPSIS

All told, the picture that emerges is one of a highly

interconnected surface vasculature that forms a two-dimen-

sional network and is a robust source of blood to the

penetrating arterioles (Figure 2). The subsurface microvas-

culature forms a three-dimensional network that is fully

connected and forms a robust source of nutriment to the

neurons and glia throughout neocortex (Figure 4). However,

flow in the penetrating arterioles and venules that traffic

between the surface and subsurface networks is fragile

(Figure 5A), in the sense that blockage of one vessels leads

to a break in the supply chain and neuronal death

throughout a cylinder of cortex (Figures 5B and 6D).

NEXT STEPS

Open issues remain at the level of basic physiology and

biofluid mechanics as well as in biomedicine. With regard to

basic issues, none is greater than the means by which the

nervous system controls vascular tone.

Resting-State Fluctuation in Blood Oxygenation
We consider the issue of vasomotion [23,54] (Figure 4) and

the potential connection to the resting state signal in BOLD

fMRI [27]. The resting state signal is a roughly 0.1 Hz

oscillation in the blood volume and/or the oxygenation state of

hemoglobin in the blood that, further, is correlated in time

between regions of cortex with similar function [8,92]. For

example, the areas of motor cortex that control motion of the

index finger in each handwould have correlated BOLD signals.

There is evidence for callosal inputs that communicate low

frequency electrical activity between such areas [48]. Thus, we

conjecture that low frequency electrical activity entrains the

intrinsic oscillators in smooth muscle that drive vasomotion

[1,69], and that tissue oxygenation is slaved to vasomotion, as

the origin of the synchronous activity in the resting state.

Evidence to support this conjecture represents work in

progress [52]. In particular, it remains unclear if vasomotion

drives tissue oxygenation or, rather, that vasomotion is slaved

to tissue oxygenation and renders our conjecture false.

Pericytes as Control Elements to Flow Through the
Subsurface Microvasculature
The flux of blood through the microvessels is a function of the

resistance of the network and the pressure difference between

pial arterioles and venules. The resistance of amicrovessel is an
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Figure 8. A two-dimensional lattice model of

the vasculature that approximates the mea-

sured degradation in flow after blocking a

single penetrating arteriole. (A) Planar circuit

with a rhombic lattice and two penetrating

venules for each penetrating arteriole, consis-

tent with measurements of actual penetrating

arteriole versus ascending venule densities.

Blockage of a penetrating arteriole leads to a

region of no flow with an effective radius of

0.9-times the median spacing between pene-

trating venules, whereas blockage of a pene-

trating venule leads to a region of no flow with

an effective radius of 0.5-times the median

spacing between penetrating venules. Adapted

from Blinder et al. [10]. (B) Comparison of the

prediction from the lattice model and data for

flow in downstream microvessels after block-

age to a penetrating arteriole. Adapted from

Nishimura et al. [64] and Blinder et al. [10]. (C)

Comparison of the prediction from the lattice

model and data for flow in upstream micro-

vessels after blockage to a penetrating venule.

Adapted from Nguyen et al. [63] and Blinder

et al. [10].
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exquisitely sharp function of its diameter (Figure 7B) since the

size of the vessel is close to that of RBCs [72]. This suggests that

significant changes in resistance will accompany sub-micro-

meter changes in diameter. Both smooth muscle and pericytes

are cell types that could act as control elements as these cells

ensheath vessels and contain contractile filaments although

pericytes are unique to subsurface microvessels [21]. Evidence

from in vitro studies that include demonstrations of pericyte

contraction in response to electrical stimulation [70], neuro-

transmitters [31,40,70], and simulated ischemia [31] support a

role for the control of microvessel diameter through the

activation of pericytes. However, there is contradictory data

obtained in live animals concerning changes in the diameter of

microvessels that are ensheathed by a pericyte [25,31]. A key

difficulty is distinguishing pericytes from smooth muscle

in vivo.

What molecular markers are available to highlight peri-

cytes for guidance during in vivo measurements? Pericytes

express the smooth muscle isoform of actin [5], which makes

them difficult to distinguish from the smooth muscle of

subsurface arterioles, although pericytes located on micro-

vessels that lie midway between penetrating arterioles and

venules may lack contractile elements [60]. Similarly, the

proteoglycan NG2, which is often used as a marker for

pericytes [58] (Figure 9), is also expressed in arteriolar

smooth muscle. This data raises questions about the utility of

a mouse line that links the expression of the proteoglycan

NG2 to the fluorescent protein DsRed [97,98] for studies on

pericytes. The intermediate filament desmin, however, is

expressed in arteriolar smooth muscle but not pericytes of

the brain [5,61] (Figure 9B–D). In principal one can use an

intersectional, dual-recombinase strategy [24] to form a
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Figure 9. Pericytes are a potential means for the brain to control its own blood supply. The data are maximum projections though stacks of confocal

images from a transgenic mouse brain that expressed NG2::DsRed (red), that is, the fluorescent protein DsRed is linked to expression of NG2 [97]. The

animal was perfused with a fluorescein-labeled albumin gelatin [86] (green) and sections were labeled with a-desmin antibody (white) and stained for

DAPI (blue) to identify cell nuclei. (A) Overview with areas noted for detailed analysis. Projection across 37 sections in 1.05 lm steps. The fluorescein

channel is saturated and desmin channel is excluded. (B) Illustration of a penetration arteriole, with staining for both NG2 and the desmin (arrows point to

expression at cuts through lumen); other channels are excluded. Projection across 43 sections in 1.0 lm steps. (C, D) High magnification view of

microvessels and, presumably, pericytes with lack of labeling for desmin. Projection is across 32 sections in 1.0 lm steps. (E) Proposed dual-recombinase

strategy to form a transgenic animal that labels pericytes but not smooth muscle. We cross the Ai3 reporter mouse [51] (Jax: 007903) with the tamoxifen-

indicable NG2::CreERTM driver mouse [98] (Jax: 008538), and then a hypothetical desmin::Flp driver mouse. The expressing cells should be pericyte, as

indicated, as well as oligodendrocyte precursors and sparse labeled neurons.
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transgenic animal that labels only pericytes. We provide an

example two-step scheme (Figure 9E) that is based on an

initial activation of fluorescent protein expression in the Ai3

reporter line [51] through breeding with the existing NG2-

CreERTM driver line [98]. The resulting bigenic progeny are

then bred with a hypothetical desmin-Flp driver line to

subtract fluorescent protein expression from arterial smooth

muscle, while leaving pericyte expression intact.

Relation of Microlesions to Human Disease
The lesions generated by the occlusion of single-penetrating

arterioles bear remarkable similarity in location and shape to

microinfarcts seen in the aging human brain [78]. While

most data supporting the existence of microinfarcts in

humans comes from neuropathological studies [93]

(Figure 10A), there is mounting evidence to suggest that

these lesions can be detected and tracked during life using

high-field MRI [89] (Figure 10B) and most recently clinical

MRI [88]. Several groups have shown that vascular cognitive

impairment is strongly correlated with an increased inci-

dence of microinfarcts [29,37,39,82]. Thus, improved meth-

ods to detect microinfarcts by MRI are essential in the

treatment of dementia, which must be identified before the

onset of clinical symptoms. We suggest that rodent models of

vascular cognitive impairment will be integral to the design

of protocols for early detection through MRI imaging and

mitigation of continued spread of dysfunction through

pharmacological intervention [49].

A second and no less perilous form of microscopic lesion

is the cerebral microbleed [65,71,90,95]. These are caused by

rupture of microvessels, generating lesions that exist on a

similar size scale as microinfarcts as seen with high-field MRI

(Figure 10C). Microbleeds increase the likelihood of demen-

tia, and like microinfarcts, their role in the pathogenesis of

vascular cognitive impairment remains poorly understood.

Microbleeds can be modeled in rodents through the use of

nonlinear absorption of laser pulses to breach the vascular

wall [67]. In vivo imaging has demonstrated the ability of

microbleeds to compress the surrounding tissue but,

remarkably, this leads to minimal impact on neuronal

structure and function [14,73]. In light of clinical evidence

for microbleeds in even middle-aged adults [71], it is

imperative to pursue optically induced microinfarcts and

microbleeds as experimental platforms to model their human

counterparts in a controlled manner. It is especially relevant

to pursue models of lesions to white matter in rodents, given

the prevalence of white matter lesions in the human brain

[53].

EPILOG

Continued progress toward our understanding of the neu-

rovascular system will depend in part on the adoption of new

tools. Studies on the logic of vasoactive transmitters will gain

from the use of cell-based indicators of amine and peptide

transmitters [57] and expanded use of structural and

White matter 

α-GFAP
Hematoxylin

Microinfarct
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C Microbleeds
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Figure 10. Neuropathological evidence of “invisible” lesions in the aging

human brain. (A) Example of gray matter microinfarcts in a light-level

microscopy neuropathological study by Sofroniew and Vinters [84].

(B) Detection of cerebral microinfarcts with FLAIR MRI at seven Tesla.

Adapted from Brundel et al. [11]. (C) Detection of cerebral microbleeds

with T2* gradient echo MRI at 3T. Adapted from De Reuck et al. [16].
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functional markers of vascular function [33]. The detection

of relatively small changes in the diameter of microvessels

will gain from the use of sub-diffraction imaging techniques

[20]. Lastly, studies on biomedical issues that concern

microlesions in white matter and the mechanisms of vascular

dementia will gain from nonlinear optical techniques for

deep imaging that exploit windows in the absorption

spectrum of water at long wavelengths [34,47].

PERSPECTIVE

We have reviewed the architectural principles of the cerebral

cortical vascular system. Experimental and theoretical

evidence suggests that penetrating arterioles are weaknesses

in the vascular supply chain. Obstruction of these arterioles

in the aging human brain may be key contributors to

vascular cognitive impairment, and thus warrants further

study both clinically and in animal models.
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