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of cortical arteriole networks for
understanding flow redistribution due to
occlusion and neural activation
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Abstract

Computations are described which estimate flows in all branches of the cortical surface arteriole network from

two-photon excited fluorescence (2PEF) microscopy images which provide the network topology and, in selected

branches red blood cell (RBC) speeds and lumen diameters. Validation is done by comparing the flow predicted by

the model with experimentally measured flows and by comparing the predicted flow redistribution in the network due to

single-vessel strokes with experimental observations. The model predicts that tissue is protected from RBC flow

decreases caused by multiple occlusions of surface arterioles but not penetrating arterioles. The model can also be

used to study flow rerouting due to vessel dilations and constrictions.
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Introduction

The three-dimensional vascular network of the cortex
plays an important role in redistribution of blood flow
in response to microvascular strokes and to neural activa-
tion. Since the vascular structures vary across individuals,
it is important to be able to determine how the variations
in the vasculature govern hemodynamic responses.

The microvasculature has been studied in two-dimen-
sional tissues such as rat mesentery1 and such investiga-
tions provide estimates of network-level behavior such
as mean segment hematocrit and the distribution of
blood flow velocities. For the cortical microvasculature,
mathematical models of hemodynamics have success-
fully described changes in CMRO2 and characteristics
of BOLD response curves.2–10 While these models can
be used with experimentally determined network topol-
ogies, the parameters are not easy to tailor to a specific
network under study and the models provide limited
accuracy in estimates of RBC flow in individual
vessels.28–30

Two-photon excited fluorescence (2PEF) micros-
copy can measure RBC flows in individual cortical
microvessels including the arterioles on the cortical sur-
face.11–13,31 However, accurate modeling is often
limited by experimental constraints such as variability
over time and limited regions of measurement. We have
developed a computational method that addresses these
limitations and estimates values for flows in all vessels
of a specific arteriole network on the cortex surface
based on physiological parameters determined for
that network. We validated the method by comparing
the flow predicted by the method with measured flows
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and by comparing flow redistribution in the network
due to single-vessel microvascular strokes with
experimental observations.14,15 With additional simple
assumptions about the effect of one or more micro-
vascular strokes or neural activation, the model pre-
dicts how flows throughout the network will change
in the presence of strokes or due to vessel diameter
changes induced by neural activity.

Material and methods

With regard to computational methods, we model the
microvascular system as a network of linear resistances
that obeys Kirchhoff’s Current and Voltage Laws
(KCL and KVL, respectively) in which voltage is analo-
gous to pressure and electrical resistance is analogous
to fluid resistance. The approach is sketched in Figure 1
and described in detail in Supplement Section B. In
summary, (1) the topology of the network, the values
of the resistance for each branch in the network, and
the RBC speeds are constrained by the 2PEF experi-
ments, (2) RBC flows are approximated by using
experimental measurements of RBC centerline speeds
in individual vessels and a previously estimated para-
bolic flow profile in arterioles,27 (3) the vessels that exit
the imaged volume are either connected to a common
ground via pressure sources (‘‘boundary pressures’’) for
surface arterioles or via a resistor modeling the pene-
trating arteriole and the capillary bed for penetrating
arterioles, and (4) the values of the boundary pressures
and their shared affine variation with time are estimated
by a weighted least squares problem which compares
flows predicted by the mathematical model with flows
estimated from the 2PEF data.

Computational details behind validation of the
model, experimental design, prediction of flows in the
presence of strokes, and prediction of tissue perfusion
are in Supplement Section D.

With regard to experimental methods, data from two
rats came from a previous study.16 In addition, one new
experiment was performed using the same surgery and
imaging protocols as in Nishimura et al.16 and is detailed
in Supplement Section E. The ‘‘Institutional Animal Care
and Use Committee’’ at Cornell University (https://www.
iacuc.cornell.edu/) approved the procedures used in
this study. The University has accreditation from
the Association for Assessment and Accreditation of
Laboratory Animal Care International, and all experi-
ments were performed within its guidelines. All data
were analyzed and reported according to ARRIVE
guidelines. In summary, images were acquired from
anesthetized rats with acutely implanted craniotomies.
Vessels were labeled with intravenous injections of
dextran-conjugated dye and cortical vessels were
imaged with 2PEF microscopy.

Results

Correcting for time-varying physiological effects
and boundary conditions

In vivo 2PEF imaging was used to quantify volumetric
RBC flow in individual vessels of cortical arteriole net-
works in anesthetized rats. Both the process and
the experimental results are described in Figure 1(a)
to (e). In anesthetized experiments, there is some drift
in the physiology of the subject that can affect the RBC
flow. We developed and validated a method to correct
for these effects. Flow in cortical arterioles was modeled
using a resistive network with affine time-dependent
border pressures that account for changes in physiology.
An example of this is shown in Figure 1(f). For the net-
work shown in Figure 1(a), 125 flow values in a network
of 177 vascular segments were used to determine the
boundary pressures at time t¼ 0 and the slope of the
systemic change of the pressures with time (").

In order to demonstrate that we can accurately esti-
mate " in the affine model for time-varying physiology,
we performed an experiment in which we repeatedly
measured flow in one vessel (labeled ‘‘A’’ in
Figure 1(g)) over a 2.5 h experiment, while also
making measurements of flow in other vessels in the
network. The predicted flow decrease in vessel ‘‘A’’
over time based on the affine time-dependent fit to the
flow measured in the rest of the network (including the
first measurement of flow in vessel ‘‘A’’) agreed well
with the experimentally measured gradual flow decrease
in vessel ‘‘A’’ (Figure 1(g)).

Using the boundary pressure values that result from
the solution of the least squares problem, we can com-
pute the flows at time t¼ 0 (the time of the first speed
measurement) for the entire network (Figure 1(h)). For
those branches in which speed measurements were
made, we can also use the boundary pressures (pressure
values at t¼ 0 and slope of the systemic change in pres-
sure values over time) that result from the least squares
problem to predict the measured flows (Figure 1(i)).
The fractional error when computed flows at this
experimental measurement time were compared to the
measured flows was less than 0.5 in more than 50% of
vessel segments (Figure 1(j)). In all the following
numerical experiments, we used the flows calculated
at time t¼ 0.

One challenge in experiments is that it is often not
possible to get measurements in every vessel of a net-
work. We used Monte-Carlo (Supplement Section D.2)
to explore the robustness of our flow estimates to the
fraction of vessels with experimental flow measure-
ments and the accuracy of the flow and vessel diameter
measurements. We found that most vessels in the net-
work were minimally affected by noise in the diameter
or measured RBC speed (Supplementary Figure 1(a)),
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Figure 1. Modeling of flows in cortical arterial networks. (a)–(e) Describe the process of measuring flows and determining topology.

We implanted cranial windows in anesthetized rodents, injected fluorescent dye into the blood stream to label the blood plasma, and

imaged the cortical vasculature using 2PEF microscopy. (a) 2PEF image of fluorescently labeled blood vessels on the cortical surface

overlaid with the hand-traced arterial network. Red segments of the network indicate segments where a line scan was performed to

determine RBC speed. Penetrating arterioles branched off from this network and plunged into the brain to feed the capillary beds. (b)

Projection of an image stack of a cortical arteriole. The diameter was determined by analysis of the vessel edge profile. (c) Line scan

data from vessel in (b) used to quantify RBC speeds. The image is a sequence of line scans performed at the center of the vessel, the

non-fluorescent RBCs show up as dark streaks on this space time image, and the slope of the streak is the inverse of the RBC speed.

(d) Experimental measurements of vessel diameter and RBC speed as determined in (b) and (c) for the section of the arterial network

highlighted in the white box in (a). (e) Flows calculated from the diameter and the RBC speeds in (d) assuming a parabolic flow profile,

along with the measurement time for specific vessel segments relative to the first measurement in the experiment. Note that the RBC

speed measurements were made serially and there was as much as several hours between measurements from different vessels. (f)–(j)

Describe the circuit model, the process for estimating the unknown parameters in the circuit, and some basic validation for the

process. (f) Schematic of a section of the arterial network as modeled by a resistive network. Red resistors indicate vessel resistance

determined from the diameter and length of the vessel segment. Blue resistors represent the resistance of the capillary bed down-

stream from penetrating arterioles and are of uniform resistance and connected to the same ground. The boundary pressure sources

(none appear in the white box of (a)) are placed at the edges of the surface vessels that exit the imaged area and are modeled to have

an affine time dependence (equation in figure) to account for time-varying physiology. (g) Effectiveness of using an affine time

dependence to account for the time varying physiology during the experiment. The data points represent the flows from repeated

experimental speed measurements of the vessel ‘‘A’’ in the network (inset). The blue line is the linear regression of the experimental

observation, and the green line is the flow estimated in vessel ‘‘A’’ by the model using measurements in other vessels in the network

and boundary pressure sources with affine time dependence. (h) Flows estimated using the model in all the vessels at the time of the

first measurement, i.e. t¼ 0. (i) Flows calculated using the model in the vessels for which speed measurements were taken at the time

of the experimental measurement, taking the time-dependent change in boundary pressures into account. (J) Histogram of fractional

errors between flows estimated by the model and the experimentally determined flows.
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and that the slope of the systematic change in the bound-
ary pressures (i.e. ") was similarly robust to noise
(Supplementary Figure 1(b)). We found that up to
about 80% of the branches could be unmeasured and
still the fractional errors in the flows were no greater
than the approximately 10% fractional errors in the
actual measurements (Supplementary Figure 1(c)).
Furthermore, we found that measurements with smaller
than about 30% fractional error led to linear scaling of
the fractional errors in the flows. In all cases (0% to 30%
fractional errors in the measurements), increasing the
fraction of missing measurements past about 80% leads
to an abrupt increase in the fractional errors in the flows
(Supplementary Figure 1(c)). One intuitive reason that
errors in flow measurements and errors in vessel diameter
measurements have little effect on the estimates is that the
errors are both increases and decreases so that the results
of the computation, which uses all measurements to com-
pute each estimate, are not much changed.

The model recapitulates RBC flow changes after
occlusions of single arterioles

We then used this model to simulate how RBC flow is
rearranged in response to an occlusion in penetrating or
surface arterioles compared to experimental results. We
computationally eliminated flow in a vessel to model
occlusions of single vessels and measure how flows
change (Supplement Section D.1). After occlusions in
penetrating arterioles, flows in the neighborhood of the
occlusion were largely unaffected (Figure 2(a)). Very small
flow increases (maximum less than 5%) were observed
in neighboring penetrating arterioles (Figure 2(b)). This
result is consistent with previous experimental studies14,17

that did not observe large flow increases in neighboring
penetrating arterioles. The modest changes in RBC flow
in neighboring penetrating arterioles calculated here are
lower than the experimental error of the previous
measurements.14,17

Occlusion of a surface arteriole led to significant
changes in flow in nearby surface arterioles (Figure 2(c)).
Larger flow decreases (�50%) were observed in vessels
that were within a few branches upstream (Figure 2(d))
or downstream (Figure 2(e)) from the occluded vessel.
These results qualitatively and quantitatively agree with
the flow changes in arterioles upstream and downstream
from surface arteriole occlusions measured by Schaffer
et al.14 and Blinder et al.17

The model predicts that RBC flow into tissue is
protected from occlusions of surface arterioles
but not penetrating arterioles

RBC flow in the local tissue is better reflected by the
flow in penetrating arterioles which link to the local

capillary beds than the flow in surface arterioles.15 To
estimate the changes in tissue perfusion due to occlu-
sion of one or more surface or penetrating arterioles,
we combined our flow model with the perfusion model
described in Nishimura et al.,15 which estimates that
each penetrating arteriole contributes RBC flow to
the surrounding tissue with an exponential dependence
on distance (Supplement Section D.3).

Using this model, we predict that occlusions of pene-
trating arterioles lead to linear increases in the number
of pixels of isolated tissue regions with severe decreases
in tissue perfusion (<30% of baseline flow to the
region), while occlusions in surface arterioles lead to
little changes in blood flow to the tissue (Figure 2(f))
and Supplementary Figure 2.

RBC flow to the tissue due to neural activation

Finally, we used our approach to model tissue perfu-
sion changes due to the vessel diameter changes that
occur due to neural activity. We fit measurements by
Devor et al.18 to obtain a smooth time and distance-
dependent profile for diameter changes in arterioles
after neural activation at one location (Supplementary
Figure 3(a)). We then applied the tissue perfusion
model described above, again assuming no changes in
the boundary pressures, to determine the time-dependent
tissue perfusion (Supplementary Figure 3(b) and (c)).
To compare this to intrinsic optical imaging data, we
applied a Gaussian blur with 150mm width as a means
to approximate the effects of optical scattering in the
measurement (Supplementary Figure 3(c)). Depending
on the location of the point of activation, different
patterns of flow increase and decrease were seen
(Figure 2(g)). Combining the data from 24 such simula-
tions allowed us to estimate the time-dependent
perfusion changes in annular rings around the point of
activation (Figure 2(h)).

Discussion

We have described a mathematical model of the cortical
arteriole network in which all parameters (network con-
nectivity, vessel segment length and diameter, and flow
in a subset of vessels) can be estimated from 2PEF
imaging. The model predicts flows in individual vessels
throughout the network. Based on anatomical meas-
urements, and a limited set of RBC flow measurements,
we are able to produce a model of cortical arteriole
RBC flow that predicts experimentally measured flow
rearrangements with occlusions.

Using Monte Carlo calculations, we have validated
the estimation procedure, in the sense that moderate
errors in vessel diameter measurements and flow
speed measurements do not lead to significant changes
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in the estimates of flows in vessels for which no flows
were measured. Also, using Monte Carlo calculations,
we have investigated one aspect of experimental design,
specifically, how many flows must be measured in
order to provide accurate estimates of the remaining
flows. To validate the model, we compared the
model’s estimates of changes in flow due to occlusions
of single vessels to those observed in experimental
measurements.

Our model predicts that multiple surface arteriole
occlusions can be tolerated with minor changes in

RBC flow delivered to the tissue. This is consistent
with the highly redundant, mesh-like arteriole network
on the cortical surface. This morphology, often referred
to as an arcade structure is also observed in skeletal
muscles of different species such as rats, cats and pigs.
These structures are thought to protect the tissue
from ischemia, and to maintain uniform pressure in
healthy tissue.21–23

A more biophysically accurate model would take
into account non-ideal flow phenomena such as
plasma skimming, non-uniform hematocrit and vessel
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Figure 2. Changes in RBC flow in the network and tissue perfusion due to multiple occlusions in the network. (a)–(b) Penetrating

arteriole occlusion. (a) Fractional RBC flow changes in the network in response to occlusion of the penetrating arteriole indicated by

the red X. (b) Post occlusion flow described by a box plot as a fraction of baseline in surface arterioles upstream of the occluded

penetrating arteriole. Note the small range of the vertical axis. (c)–(e) Surface arteriole occlusion. (c) Fractional RBC flow changes in

the network in response to occlusion of the surface arteriole indicated by the red X. (d)–(e) Post occlusion flow described by a box

plot as a fraction of baseline in surface arterioles upstream (d) and downstream (e) of the occluded surface arteriole. (f) Median

fraction of tissue area receiving less than 30% of original baseline RBC flow as a function of number of occlusions in penetrating

arterioles (blue) and surface arterioles (red). A penetrating arteriole contributes a tissue RBC flow to a pixel that decreases with an

exponential dependence on the distance between the pixel and the arteriole and the contributions from different arterioles are

summed. (g) Peak normalized total hemoglobin for neural activation centered on points (shown by white X) in the network. Vascular

dilation profiles were based on observations in Devor et al.18 Tissue distribution modeled as in 2F. (h) Mean normalized total

hemoglobin as a function of time determined from concentric circles of size 0.32 mm centered on the point of activation.
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morphology.24–26 However, in large cortical arteriole
networks, we are experimentally constrained to only
measure RBC speeds. Therefore, including these effects
in the model would require further parametrization
unconstrained by the experimental observations, such
as the drift parameter M in the work of Gould and
Linninger.32 A biphasic blood flow model that accur-
ately predicts flow including plasma-skimming effects in
large complicated vessel topologies (trifurcations,
loops, etc.) has been described32,33 which requires
iterative linear computation of bulk blood flow and
hematocrit fields. However, study of network level
phenomena through Monte Carlo calculations for
occlusion and redistribution requires many such single
network calculations which are prohibitively expensive
even though the linear nature of the required calcula-
tions makes the problem much closer to practical
solution.

Understanding the spatial behavior of neurovascular
coupling is important for estimating the underlying
neural activity from, for example, the data provided
by functional magnetic resonance imaging. An under-
standing of the flows that is specific to each individual
network, rather than an average over a population of
networks, is most useful. The fixed topology of the net-
work in each individual likely has an important influ-
ence on that individual’s neurovascular coupling.19

While the topology of an individual’s network is
fixed, the diameter of the vessels is variable and while
the diameter changes in the arterioles are dominant,
there are also some changes in the capillaries.20 In the
examples of this paper, the diameter changes are dra-
matic, i.e. stroke or no stroke, but the methods of this
paper could be generalized to gradated dilation and
constriction. Models of individual networks, as are
described in this paper, will make it clearer how
neural activity affects the vascular system, e.g., by
experiments with simultaneous measurement in individ-
ual networks of neural activity and flow.
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