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Abstract
Objective. To describe a toolkit of components for mathematical models of the relationship
between cortical neural activity and space-resolved and time-resolved flows and volumes of
oxygenated and deoxygenated hemoglobin motivated by optical intrinsic signal imaging (OISI).
Approach. Both blood flow and blood volume and both oxygenated and deoxygenated
hemoglobin and their interconversion are accounted for. Flow and volume are described by
including analogies to both resistive and capacitive electrical circuit elements. Oxygenated and
deoxygenated hemoglobin and their interconversion are described by generalization of
Kirchhoffʼs laws based on well-mixed compartments. Main results. Mathematical models built
from this toolkit are able to reproduce experimental single-stimulus OISI results that are
described in papers from other research groups and are able to describe the response to multiple-
stimuli experiments as a sublinear superposition of responses to the individual stimuli.
Significance. The same assembly of tools from the toolkit but with different parameter values is
able to describe effects that are considered distinctive, such as the presence or absence of an
initial decrease in oxygenated hemoglobin concentration, indicating that the differences might be
due to unique parameter values in a subject rather than different fundamental mechanisms.

Keywords: neurovascular model, optical intrinsic signal imaging, cerebral blood flow control,
cerebral blood volume control

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical intrinsic signal imaging (OISI) is essentially micro-
scopic video reflectance spectroscopy imaging of exposed
brain cortex and has been done on patients being prepared for

neurosurgery for the treatment of intractable epilepsy as well
as more extensively on experimental animals during the study
of the neurovascular coupling of cerebral blood volume,
hemoglobin oxygenation, and neuronal activity.

The ultimate goal of this work is to contribute to the
planning of neurosurgical procedures. A patient with epilepsy
that is intractable to drug therapy is sometimes treated by
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surgical removal of the initiating focus of the seizures. After
preoperative diagnostic studies, such a patient can have
additional diagnostic tests done after the region of cortex has
been exposed by a crainiotomy but before removal of any
neural tissue, including OISI [1–6], in order to improve the
surgical plan. Moreover, OISI may used to examine and
quantify the effect of electrical neurostimulation to increase
blood flow in the brain. Both of these applications involve the
behavior of the mathematical model of the neurovascular
system over extended periods of time. Because of the dura-
tion, this paper describes and demonstrates new lumped-
parameter circuit models for the flows and volumes of oxy-
genated and deoxygenated hemoglobin coupled to a neuro-
vascular control system based on feedback and therefore
representing the so-called metabolic hypothesis [7] for neu-
rovascular control. The ultimate goal is not achieved in this
paper because of challenges in extracting accurate vessel
topologies from the OISI imagery. Therefore the tools
developed in this paper are demonstrated in simpler situations
(sections 3 and 4). Because the model is motivated by human
neurosurgery applications, the goal is an approach that is
sufficiently simple such that the parameters in the model can
be determined for individual subjects, e.g., for intra-operative
clinical video [6] from a patient, rather than for populations of
subjects.

In order to achieve the simplicity goals, the model is
based on a combination of physical laws, including Kirchh-
offʼs, Laplaceʼs, Poiseuilleʼs, and Beer–Lambert laws, and
phenomenological relationships. Because the neurovascular
interaction is not completely understood, a goal is to provide a
set of tools that are sufficiently flexible such that different
hypotheses can be explored computationally, analogous to the
flexibility of the models of [8].

Models of the neurovascular system typically involve
many components and different components are modeled by
different investigators with different levels of physical fide-
lity. For instance, the network topology of [9] is based on
x-ray synchrotron images of 2.8 mm3 volumes of rat cortex
and networks of similar fidelity are probably also available
via two-photon laser scanning microscopy (TPLSM) [10, 11].
The networks used in the numerical examples of this paper
are much more idealized, but the circuit ideas could be used in
much more complicated and realistic networks. Some inves-
tigations focused on flows use purely resistive models [9]
while other models based on balloons [12] and windkessel
[13] ideas combine resistors and capacitors. In addition, some
models describe input–output phenomenological behavior
[8, 14–16] while others focus on individual vessels [9, 17].
The model described in this paper is focused on individual
vessel segments and describes the segments with circuits
including both resistance and capacitance. However, the 3D
geometry of the vessel segment is only approximated, i.e.,
what fraction of the vessel appears in what pixel of the image
data. It would be challenging to infer more information from
the image data and probably not necessary to have more
information in order to achieve the goal of predicting the
aggregated signal in a pixel of the image data. Some

investigators include extensive biochemistry in their models
[18]. While the biochemistry in the model described in this
paper is limited to the conversion of HbO2 to HbR, additional
molecules that are transported by the entering blood and
metabolized dependent on brain activity could be included
(section 2.2.3).

The remainder of the paper is organized in the following
fashion. The model is described in section 2. Comparisons
with two sets of experimental data are described in section 3
and example calculations demonstrating the spatial features of
the model are also described in section 3. Grubbʼs law [19] is
a macroscopic time-averaged relationship between cerebral
blood volume and cerebral blood flow originally described in
1974 based on radioactive tracer analysis. The model of this
paper makes it possible to compute many quantities related to
cerebral blood volume and cerebral blood flow. As an
example of such a calculation, in section 4 we derive a
relationship between cerebral blood volume and flow analo-
gous to Grubbʼs law. Finally, the paper concludes with a
discussion (section 5).

2. Model

The OISI signal is dominated by the oxygenation state of
hemoglobin. Therefore, the information that is available from
these measurements is space-resolved and time-resolved
blood flow, blood volume, and hemoglobin oxygen-saturation
values. The level of detail described in the model is specified
by the detail of the experiments. The experiment allows pixel
sizes on the order of 101 μm and temporal sampling intervals
on the order of 10 1− s. Such pixel sizes are on the same order
of magnitude as a typical capillary length and therefore a
capillary may contribute to multiple pixels thereby acting to
deliver hemoglobin with intermediate oxygenation level to
the more distal pixel(s). Therefore the circuit elements and
laws are designed to provide corresponding levels of detail.
The temporal sampling interval is intermediate between the
intervals of MRI (typically 100 s) and ECG or MEG (typically
10 3− s). Because the saturation state of hemoglobin is an
important feature of the experiment, it is also an important
feature of the modeling tools. But it would be straightforward
to take the ideas of the modeling tools and apply them to other
molecules. Finally, the experiment reflects the nonlinear
nature of the neurovascular coupling and therefore the
resulting model is also nonlinear. Because of the nonlinearity,
the model describes total signals and not perturbations in
signals superimposed on an unmodeled baseline signal.

The model has four components as is shown in figure 1.
The first two components are a vascular circuit that describes
cerebral blood flows and volumes and a control system
modifies parameters in the circuit. These two components are
the primary focus of the paper. The second two components
are a description of the neural electrical signals that drive the
first two components and a description of the optical system
that provides measurements of the vascular circuit
component.
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2.1. Model: vascular component

A circuit is described in terms of elements, interconnection
laws, and topology. The novelty in the vascular circuit is
concentrated in the elements, in which resistance to flow and
storage of volume are controlled by a single parameter, and
the interconnection laws, where flows and volumes of oxy-
genated and deoxygenated hemoglobin are separately
described (including the conversion of oxygenated hemo-
globin to deoxygenated hemoglobin) since the pixel size is on
the same order of magnitude as the length of a capillary
leading to a pixel receiving hemoglobin with varying oxy-
genation levels. In some cases, very simple topologies are
used, e.g., in describing the macroscopic Grubbʼs law [19]. If
detailed topology is available for a situation of interest, the
components and connections between components described
in this paper could be easily inserted.

2.1.1. Circuit elements. There are detailed models of the
vascular wall. For instance, reference [8] describes a visco-
elastic model artery, capillary, and venous components.
Reference [20] describes a nonlinear elastic model for larger
arteries focused on describing the changes that occur in
arterial wall hypertrophy associated with systemic
hypertension. Reference [21] describes a visco-elastic model
of primarily the venous compartment where one of the
parameters in the pressure-volume relationship of the vessel is
given its own phenomenological temporal differential
equation. All of these models are focused on temporal
variation of a vascular system without spatial extent so, in the
context of OISI video data, they would perhaps be models for
each pixel or each vessel segment within a pixel. However,
unless the parameters do not have to be altered from nominal
values even for ill patients, there are too many parameters to
be estimated for each vessel segment in each pixel from the
type of OISI data that motivated this work [6]. Therefore we

use much simpler, albeit less accurate, models as described in
the remainder of this section.

Sources and two types of circuit elements are used to
model the vascular system. The simpler type has a fixed
volume and resistance to flow (figure 2(a)). The more
complicated type has a vascular wall that is described as a
linear isotropic elastic material with a Youngʼs modulus
which is denoted by E (figure 2(b)). When pressure in the
tube increases the tube expands in diameter so that the
volume increases and the resistance to flow decreases.
Alternatively, when E increases (‘stiffer’) the diameter
decreases and the resistance to flow increases and when E
decreases (‘floppier’) the diameter increases and the resistance
to flow decreases. The vascular system is thought of as being
controlled by controlling the value of E . In a rough way, this
corresponds to controlling the tone of the smooth muscle in
the wall of small vessels. In the electrical circuit analogy,
fluid flow is electrical current and fluid pressure is electrical
voltage.

Tubes with variable Youngʼs modulus. The tube with variable
modulus (figure 2(b)) is simultaneously described from two
different points of view. In the first point of view, the tube is
in equilibrium with a constant pressure throughout and the
radius of the elastic wall is determined by the pressure and
Youngʼs modulus (denoted by E). Let the Youngʼs modulus
be described as E t E t E( ) ( ), whereE0 0δ= + is the nominal
Youngʼs modulus and t( )Eδ is the perturbation in the
Youngʼs modulus due to control. Let ζ be the thickness of
the wall. Let a0 be the nominal and a the actual radius of the
tube. Let P be the pressure in the tube. Then, the cylindrical
form of Laplaceʼs law [22, p 71] is

( )aP
E

a a

a
(1)E0

0

0ζ
δ= +

−

(the units are P: (Pressure) = (Force/Area2); E and E0 δ :
(Force/Area2); a a, 0, and ζ: (Length)). Solving this equation
for a agives as a function of P and Eδ (as well as the nominal
values E aand0 0 which are suppressed in the notation),
specifically,

( )a P
E

, . (2)E
E

E

a

P

0

E0

0

δ
δ

=
+

−δ
ζ

+

Let l denote the length of the tube andQ denote the volume of
the tube. Then standard geometry (the volume of a cylinder)
implies that Q as a function of P and Eδ is

( ) ( )Q P a P l
E

P
l, , . (3)E E

E

E

a

2 0

2

E0

0

⎡⎣ ⎤⎦
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
δ π δ π

δ

ζ

= =
+

−δ+

Q P( , )Eδ is the tubeʼs contribution to the blood volume of the
cortex imaged in this particular pixel. In the analogy to an
electric circuit, changes in Q P( , )Eδ with time are the
charging and discharging of a capacitor with time.

In the second point of view, the tube is in the steady state
with a difference of pressure between its ends and a fixed

Figure 1. The four components of the model at one pixel and their
interactions shown as arrows which indicate the direction of the
interaction. The horizontal arrows indicate connections to adjacent
pixels.
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radius of the elastic wall and the fluid undergoes laminar flow
through the tube. Poiseuilleʼs formula [23] states that the
pressure drop from one end of the tube to the other end is
proportional to the volume flow through the tube. Arbitrarily
label the ends of the tube by 1 and 2. Let P Pand1 2 be the
pressures at end 1 and end 2, respectively, of the tube and let
I be the volume flow into end 1. (If I 0< then the flow is, in
fact, out of end 1.) Let η be the dynamic viscosity of the fluid.
Then Poiseuilleʼs formula [22, p 94] is

( )
P P

lI

a P

8

,
. (4)

E

1 2 4⎡⎣ ⎤⎦
η

π δ
− =

Since the difference of pressures (P P1 2− ) is linearly related to
the flow (I ), it is natural to define a resistance which is
denoted by R P( , )Eδ and defined by

( )
( )

R P
l

a P

l

E

a

P

E
,

8

,

8
. (5)E

E

E

E
4

0

0

0

4
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⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
δ η

π δ

η
π

δ
ζ

δ
= =

+
−

+

In the eventual electric circuit, R P( , )Eδ is a resistor. Note
that the dependence of viscosity η on radius a (e.g., [24, 25])
could be included but is only included in section 4. Except for
section 4, including this effect would complicate the time
derivatives because a depends on time and, therefore, η would
also depend on time.

The two points of view are incompatible because the
equilibrium point of view has a constant pressure throughout
the entire tube and no flow while the steady state point of
view has a varying pressure along the tube and flow. To
merge these two points of view requires further modeling as is
described in the remainder of this paragraph. Continue to
label the two ends of the tube by 1 and 2. It is assumed that
one half of the resistance occurs at end 1 of the tube and one
half at end 2, that no volume is stored in the resistive parts of
the tube, and that all of the volume is stored between the
resistive parts in an infinitesimal length of tube which has no
resistance and whatever pressure is implied by the flows
through the resistive parts of the tube. With these

assumptions, a tube with variable modulus is exactly
equivalent to a fragment of an electric circuit which is shown
in figure 2(b).

It is important to note that the capacitor in figure 2(b)
does not have a capacitance value. Instead, it is labeled by the
amount of charge (i.e., fluid volume), denoted by Q P( , )Eδ ,
that it stores. The reason for this is that the capacitor in
our model stores charge at zero voltage (i.e., pressure)
which is not possible in the standard capacitor in which
charge is proportional to voltage. Therefore, the form of
Kirchhoffʼs current law (KCL) at the node labeled by P is
figure 2(b) is

( ) ( )
( )

P t P t

R P t t

P t P t

R P t t

Q P t t

t

( ) ( )

( ), ( ) 2

( ) ( )

( ), ( ) 2

d ( ), ( )

d
0, (6)

E E

E

1 2

δ δ

δ

−
+

−

+ =

where

( )
( )

( )

Q P t t

t

Q

P
P t t

P

t
t

Q
P t t

t
t

d ( ), ( )

d
( ), ( )

d

d
( )

( ), ( )
d

d
( ). (7)

E
E

E
E

E

δ
δ

δ
δ

δ

= ∂
∂

+ ∂
∂

Equations (6) and (7) imply a differential equation for P(t)
which depends on P t P t( ) and ( )1 2 , specifically,

( )

( ) ( )
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P

t
t

Q

P
P t t

Q
P t t

t
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P t P t
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d
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E

E
E

E

E

E

1

1

2

⎡
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⎤
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⎡
⎣
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⎤
⎦
⎥⎥

δ

δ
δ

δ
δ

δ

= − ∂
∂

× ∂
∂

+
−
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−

−

Fixed tubes. The fixed tubes (figure 2(a)) have a fixed
volume, denoted by Qa, which is always full and a fixed
resistance to flow. Therefore, they are analogous to an
electrical resistor of fixed value, denoted by Ra. The fixed

Figure 2. Circuits within vascular tubes. Panel (a): a purely resistive elementary component with fixed modulus (T ) in block form and as an
electrical circuit. Panel (b): a elementary component with both resistive and capacitive characteristics and a variable modulus ( ) in block
form and as an electrical circuit. The arrow on the  block indicates the control signal for the variable modulus.
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volume, or equivalently charge, Qa is outside of the electrical
circuit model and does not enter the calculations of this paper
until equation (11).

2.1.2. Circuit laws. The basic laws are Kirchhoffʼs current
and voltage laws. These laws determine the total flow of
hemoglobin through the circuit. In addition, in order to
describe pixels which are supplied with blood of variable
oxygenation, we desire to describe the fraction of hemoglobin
that is oxygenated and to do this we extend Kirchhoffʼs laws.
The primary idea behind the extension is ‘well mixing’. In
particular, the fraction of HbO2 supplied by a node is the
instantaneous mixing of the fractions of HbO2 delivered to the
node and the fraction of HbO2 supplied by a capacitor is the
integrated mixing of the fractions of HbO2 delivered to the
capacitor in the past. In addition, a further idea is that HbO2 is
converted to HbR in the capacitors.

The extension depends on whether flow is toward a
device or node (current is defined as flowing toward the
device or node and the value of the current is positive) versus
the reverse. For this reason the unit ramp function
r x r x xu x u x( )( ( ) ( ), where ( )= is the unit step function such
that u x x x( ) 1 for 0 and 0 for 0)= ⩾ = < appears in the
equations.

The extensions to Kirchhoffʼs laws are only described for
the limited class of circuit topologies that can be constructed
out of sources and the circuit fragments shown in figure 2.
Therefore, all capacitors are connected between a node and
ground and at most one capacitor is connected per node. Let
Q t Q t( ) and ( )HbO2

α α be the amount of HbT and HbO2 stored
in a capacitor connected between the thα node and ground.
Let f t( )α be the fraction of HbO2 in the flow away from the

thα node. Let α be a set that contains the indices of all
resistors attached to node α. For n ∈ α, let n( )ρα be the
index of the node connected to the α th node via resistor n.
Let nand ( ) χα α , nand ( ) ια α , and nand ( ) υα α be the
corresponding variables for capacitors, current sources, and
voltage sources, respectively. Since at most one capacitor is
connected to a node, α is either empty or has a single element
which is the ground node.

• A current source resets the fraction of oxygenated
hemoglobin to a fixed value f I when it supplies current.
Similarly, a voltage source resets the fraction of
oxygenated hemoglobin to a fixed value f V. In the
application of these tools in this paper, the only source is
the left heart, it is described as a voltage source, and the
fixed value is 1.0.

• Instantaneous mixing at circuit nodes. The idea is that the
fraction of hemoglobin in flow out of a node is the
instantaneous average of the fractions of hemoglobin in
flow into a node. At every time t (which is not indicated
in the equation), there are four possible circuit elements
in the branches connected to node α, and the idea of

instantaneous mixing is described by the equation

( )

( )

( )
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where i t( )n
,α α′ is the current that flows from node α′ to

node α via circuit element n and the ramp function r ( · )
tests the direction of the flow.

• Integrated mixing in capacitors and conversion of HbO2

to HbR in capacitors. Flows into a capacitor have a
fraction of HbO2 that is determined by the source of the
flow, flows out of a capacitor have a fraction of HbO2

determined by the integrated mixing that occurs in the
capacitor, and HbO2 is converted to HbR in the capacitor.
Suppose a capacitor is connected between node α and
ground, which is the only configuration that occurs in our
vascular models. Then the resulting equation, with the
dependence on time suppressed, is

( ) ( )Q

t
r i f r i

Q

Q
G

Q

Q

d

d

, (10)

HbO

,G ,G

HbO HbO

2

2 2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ν

= − −

× −

α
α α α

α

α

α

α

where i t( ),Gα is the current the flows from node α to

ground and where the term ( )G Q t Q t( ) ( )HbO2ν α α

describes the conversion of HbO2 to HbR in the
capacitor noting that c t Q t Q t( ) ( ) ( )HbO HbO2 2=α α α is the
volume fraction of HbO2 in the capacitor. The conver-
sion term has a constant with units, i.e., ν (units
(Volume)/(Time)), multiplying a function, i.e.,

( )G Q t Q t( ) ( )HbO2
α α , and the function G is described

in section 2.1.3.
• The value of Q t Q t( ) determines ( )HbO HbR2

α α by

Q t Q t Q t( ) ( ) ( ). (11)HbR HbO2= −α α α

When computing the volume of oxygenated, deoxyge-
nated, or total hemoglobin at a pixel i j( , ) (denoted by
Q t( )i j,

HbR , Q t( )i j,
HbO2 , and Q t( )i j, ) rather than in the

capacitor at node α (denoted by Q t( )HbR
α , Q t( )HbO2

α , and
Q t( )α ), it is necessary to divide the volume in a tube that
crosses pixel boundaries between the pixels. In the
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calculations reported here, the partitioning is in equal
parts.

2.1.3. Conversion of HbO2 to HbR. A simple description of
the conversion of HbO2 to HbR is used: HbO2 is converted to
HbR plus energy and, because the conversion is enzymatic, it
has a limited maximum rate. The description assumes that
substrate other than HbO2 is available in excess. The
nonlinear dissociation curve of hemoglobin and molecular
oxygen keeps the plasma concentration of molecular oxygen
nearly constant. Let the volume fraction of HbO2 in capacitor
α at time t be denoted by c t( )HbO2

α . Let the volume fraction of
HbO2 such that the rate is one-half the maximum rate be
denoted by c

*
HbO2. Then the Michaelis–Menten rate [26, pp.

192–194] is proportional to the quantity

( )G c t
c t

c c t
( )

( )

( )
(12)HbO

HbO

*
HbO HbO

2
2

2 2
=

+α
α

α

which is a pure number (i.e., no units).
Potentially, the maximum rate, ν (equation (10)) and/or

the volume fraction at the half maximal rate, c
*
HbO2

(equation (12)), might be controlled. In this paper, ν is
controlled but c

*
HbO2 is a constant and the control law for ν is

described as a part of the neurovascular control component in
section 2.2.2.

This model is proposed because the focus of the paper is
on oxygenated and deoxygenated hemoglobin and a closed
loop control system so the conversion of HbO2 to HbR and
energy is central. Using the lumped-parameter circuit tools, a
more detailed model would include the extra-vascular oxygen
by connecting the existing circuit to an additional capacitive
circuit describing storage and flow of oxygen and conversion
of oxygen to energy (which would determine t( )ei j,

δ↑ in
equation (13)). Because the additional circuit is not directly
visible in the OISI data, we have not included the additional
circuit in the calculations described in this paper. An
additional lumped-parameter circuit is not the most detailed
possible model since, if vessel geometry is known in addition
to vessel topology, then a distributed-parameter description
analogous to the Krogh model [22, section 13.5.1, pp 638ff]
could be used.

2.2. Model: neurovascular control component

The neurovascular control component fits between the elec-
trical and vascular components and is essentially a control
law. The novelty in the control law is a simple mathematical
statement of the metabolic hypothesis applied to oxygen as
the metabolite, which could be easily applied to any other
metabolite, and a simple connection of the control system to
the vascular circuit. The metabolic hypothesis is described in
terms of a so-called budget variable that, like the time delay
versus a biochemical network described three paragraphs
previously, is not physiological but rather is a compact
description of the behavior of the physiological system.

Because the components are nonlinear, the neurovascular
control component is a model for total signals not

perturbations in signals around some baseline signal. There-
fore, the neurovascular control componentʼs control law is
responsible for homeostasis as well the response to fluctua-
tions, which is the response that is most often measured in
experiments.

Our goal is to model optical measurements that are
sensitive to HbO2 and HbR and so oxygenation is an
important focus. If desired, other molecules can be given
similar focus.

Because the neurovascular control component fits
between two other components, the neurovascular control
component is constrained in terms of its inputs and outputs
which must match those of the other two components. The
output of the electrical component is S tx( , ) (equation (24))
which is also the input to the neurovascular control compo-
nent. In spite of the obvious dependence of the neural activity
in the electrical component on sufficient oxygenation, we
have not included an output from the neurovascular control
component as an input to the electrical component and
therefore this model will not describe some pathological
conditions. The vascular component has one input from the
neurovascular control component which is the Youngʼs
modulus of the vessel wall, denoted by E t E t( ) ( )E0 i j,δ= + ,

which therefore must be an output of the neurovascular
control component. Due to our focus on oxygenation, the
neurovascular control component has one input from the
vascular component which is the amount of HbO2 present in
the pixel. Additional inputs from the vascular component
could be included if desired.

2.2.1. A feedback controller for homeostasis. A coupling
process based on the ‘metabolic hypothesis’ [7, 27, 28], in
particular, a feedback process to achieve energy homeostasis,
is described in this section. As is described in section 2.2.3, to
achieve homeostasis of some other molecular mediator by
feedback would involve the same type of mathematics. At
each pixel [ i j( , )] there is a time varying [t] homeostasis
budget variable denoted by e t( )i j, (units (Unit)) and a target
value denoted by by e* (units (Unit)). The homeostasis budget
variable e t( )i j, is at the core of a feedback loop. (1) Suppose
e t( )i j, decreases. (2) Then the Youngʼs modulus
E t E t( ) ( )E0 i j,δ= + in the vascular component decreases so

that the vessel wall becomes more floppy and therefore the
vessel dilates. (3) Vessel dilation brings additional blood to
the pixel and therefore additional HbO2 which is converted
into HbR in order to create energy thereby increasing e t( )i j, .
Optionally, the conversion process itself could also be made
more efficient which would also increase e t( )i j, .

The mathematics to implement this feedback loop has
two key components which are equations for the time
variation of e t E t E t( ) and ( ) ( )i j E, 0 i j,δ= + . The equation for

e t( )i j, is a first-order differential equation saying that the rate
of change of e t( )i j, with respect to time is the difference
between production and consumption. Specifically, the
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equation is

e

t
t t t

d

d
( ) ( ) ( ), (13)

i j
e e

,

i j i j, ,
δ δ= −↑ ↓

where t( )ei j,
δ↑ is production and t( )ei j,

δ↓ is consumption.

The production of energy is proportional to the total rate
of conversion of HbO2 to HbR plus energy. The conversion

of HbO2 to HbR is described by the term ( )G Q t( )HbO2ν α of
equation (10). The proportionality constant ν, which is the
maximal rate, describes conversion of HbO2 to HbR which
has different units and potentially a different efficiency than
the conversion of e tHbO to ( )i j2 , . Therefore, a different
proportionality constant, which is denoted by bν ′ (units
(Unit)/(Time)) and describes the efficiency of the conversion
of HbO2 (and other substrates which are assumed to be in
excess) into energy is needed. Therefore, the production of
energy based on the HbO2 in the thα capacitor is

( )t G Q t( ) ( ) . (14)e b
HbO

i j,
2δ ν= ′ α

↑

The consumption of energy is proportional to the power
dissipated in the corresponding pixel of the electrical
component plus a term for basal metabolism denoted by

e ,0i j,
δ ↓ . In order to quantify this dissipation, let p t( )i j, (units

(Unit)/(Time)) denote the power which is

p t S tx( ) ( , ) , (15)i j x y, Δ Δ=

where S tx( , ) is the output of the electrical layer
(equation (24)), andx yΔ Δ are the sampling intervals in the
x yand directions, and i jx ( , )x yΔ Δ= . The consumption is

t p t( ) ( ) , (16)e i j e, ,0i j i j, ,
δ γ δ= +↓ ↓

where γ (pure number) describes the efficiency of the
electrical component, that is, how many units of metabolic
energy are consumed in order to dissipate one unit of energy
in the electrical component. This completes the description of
the equation for e t( )i j, .

The second key equation in the feedback loop is the
equation for Youngʼs modulus E t E t( ) ( )i j E, 0 i j,δ= + .

Because the pressure (voltage) equations depend on the
derivative of t( )Ei j,δ with respect to time t (e.g., equation (8)),
it is essentially that t( )Ei j,δ be smooth. For that reason, we
assume that E t( ) obeys a critically-damped second order
differential equation where the equation is second order
because it is necessary for E td d to be smooth (equation (8)).
The driving term for the differential equation and the single
time constant of the differential equation differ depending on
whether the budget variable e t( )i j, is above or below its
threshold. When above threshold, there is a time constant cτ
for constriction of vessels and the steady state value of the
Youngʼs modulus is E0. When below threshold there is a time
constant dτ for dilation and the steady state value of the
Youngʼs modulus is E0α . In mathematical form,

E

t

E

t
E E e e

d

d
2

d

d
if *, (17)c

i j
c

i j
i j i j

2
2

,

2

,
, 0 ,τ τ+ + = ⩾

E

t

E

t
E E e e

d

d
2

d

d
if *. (18)d

i j
d

i j
i j i j

2
2

,

2

,
, 0 ,τ τ α+ + = <

Since E t E t( ) ( )i j E, 0 i j,δ= + and E0 is constant with respect to

time, equations (17) and (18) imply that

t t
e e

d

d
2

d

d
0 if *, (19)c

E

c

E

E i j
2

2

2 ,
i j i j

i j

, ,

,τ
δ

τ
δ

δ+ + = ⩾

t t
E e e

d

d
2

d

d
( 1) if *. (20)

d

E

d

E

E

i j

2
2

2

0 ,

i j i j

i j

, ,

,τ
δ

τ
δ

δ

α

+ +

= − <

The equations presented in this paper concern the case
where a budget is either above (desirable) or below
(undesirable) a threshold. However, it might be the case that
it is desirable to keep the budget between two thresholds
rather than above a single threshold. This can be done by
generalizing equations (19) and (20) to have three rather than
two cases.

2.2.2. Control of ν. A controller for the maximal rate of
conversion of HbO2 to HbR, i.e., ν, is described in this
section. The nominal value of ν and the value of c

*
HbO2

(equation (12)) are set such that the system extracts a
physiologically appropriate fraction of oxygen. In the figure
captions, this fraction is referred to as 0

HbO
0
HbT2μ μ and can be

computed from the data in [29, figure 6]. The nominal value
of ν, denoted by ,bν is then scaled by the output of a control
law using the same ideas as were used in section 2.2.1. In
particular,

s

t

s

t
s e e

d

d
2

d

d
1 if *, (21)

i j i j
i j i j

2
2

,

2

,
, ,τ τ+ + = ⩾ν ν

s

t

s

t
s e e

d

d
2

d

d
if * (22)

i j i j
i j i j

2
2

,

2

,
, ,τ τ β+ + = <ν ν

and si j i j b, ,ν ν= .

2.2.3. Alternative feedback controllers. In order to describe
the optical measurements, this paper has a detailed description
of HbO2 and HbR and the description includes the idea of an
homeostasis budget which controls the conversion of HbO2 to
HbR. As described in section 2.2.1, the same homeostasis
budget can control the Youngʼs modulus which controls the
vascular component. But that is not necessary. If feedback
still exists, then there is some other molecule X and its
metabolite X′ which are delivered by the vascular system and
a budget related to X denoted by e t( )i j

X
, with a target value

denoted by e X
*
. Then, depending on whether e t e( ) ori j

X X
, *

>
e t e( )i j

X X
, *

⩽ , the neurovascular control component sets the
new value of the perturbation t( )Ei j,δ in the Youngʼs modulus.

The methods of this paper can be directly applied to this case.
First, in order to include X Xand ′, the approach for HbO2 and
HbR of sections 2.1.2 and 2.1.3 is duplicated for X Xand ′.
Second, the differential equation for the homeostasis budget
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(equation (13)) is duplicated for the X budget, specifically,

e

t
t t t

d

d
( ) ( ) ( ), (23)

i j
X

e e

,

i j
X

i j
X

, ,
δ δ= −↑ ↓

where t( )
ei j

X
,

δ ↑ is the increase in e t( )i j
X
, due to the vascular

system bringing new X to the i j( , )th pixel and t( )
ei j

X
,

δ ↓ is the

decrease in e t( )i j
X
, due to the electrical activity described by

S tx( , ) (equation (24)). Third, the relationship between
e t t( ) and ( )i j

X
E, i j,δ must be defined and the ideas of

section 2.2.1 can be used unaltered. Therefore, as soon as
X is decided upon and the decrease in the X budget due to
electrical activity, i.e., t( )

ei j
X
,

δ ↓ , is determined, the new model is

determined. The difference between depletion of a desired
quantity and buildup of an undesired quantity is whether

t( )
ei j

X
,

δ ↓ is positive or negative and whether e t e( )i j
X X
, *

>
causes decrease in the Youngʼs modulus (leading to
dilation) or increase in the Youngʼs modulus (leading to
constriction).

If more than one budget contributes to the control of the
Youngʼs modulus then the simplest situation is if the control
law is a linear combination of effects from the different
budgets. The linear combination could occur at the budget
variables. Alternatively, the linear combination could occur
after the budget variables are transformed into perturbations

t( )Ei j,δ on the Youngʼs modulus. In the later case each

perturbation could be generated using the ideas of section
2.2.1 with time constants unique to that perturbation. Finally,
and most generally, the transformation from budgets to the
total perturbation t( )Ei j,δ on the Youngʼs modulus could be a

general multiple-input single-output linear dynamical system
with the budgets as input.

2.3. Model: electrical component

The paper is focused on the vascular and neurovascular
control system components. However, to provide a complete
system from electrical excitation to optical measurement, an
electrical component is also provided. The electrical compo-
nent describes the wave propagation velocity and whether
superposition of two inputs is sublinear versus supralinear.

Suppose that there are multiple concurrent stimulations,
in particular, let s tx( , ) be the stimulation at position x and
time t. The electrical component combines these stimulations
to determine the total stimulation of the pixel at location x at
time t (denoted by S tx( , )) by including a spatial oscillation
and decay factor z, a propagation speed c, and a potentially
nonlinear superposition parameterized by the value of p
according to the equation

{ }( )

( )

S t z

s t c

x x x

x x x x

( , ) exp

, d , (24)
p p

x
2

2
2

1

2

⎡
⎣⎢

⎤⎦

R∫= ∥ − ′∥

× ′ − ∥ − ′∥ ′

′∈

where z is a complex constant, { · }R is the real part operation,
and · 2∥ ∥ is the euclidean norm. if z 1 andλ λ= is real and

negative then this equation represents exponential decay with
space constant λ− . if z 1 1 andλ λ λ= + − ′ is real and
negative and λ′ is real and positive then this equation represents
and oscillatory exponential decay with space constant λ− for
decay and period λ′ for oscillation. double stimulus experi-
ments are considered in section 3 in which case

s t s t s tx x x x x( , ) ( ) ( ) ( ) ( ), (25)1 1 2 2δ δ= − + −

where ( · )δ is the Dirac delta-function in 2D. In this case,

{ }( )

( )

S t z

s t c

x x x

x x

( , ) exp

. (26)

i i

i i
p p

{1,2} 2

2

1

⎡
⎣⎢

⎤
⎦⎥

R∑= ∥ − ∥

× − ∥ − ∥

∈

In order to better understand the role of p, consider the case
where the two stimuli are identical, z 0= , and c .= ∞ Then

S t s t s tx( , ) 2 ( ) 2 ( ) . (27)p p p
1

1 1
1

⎡⎣ ⎤⎦= =

For p 1∞ > > the superposition is sublinear since 2 2p1 < ,
for p 1= the superposition is linear since 2 21 1 = , and for

p1 0> > the superposition is supralinear since 2 2p1 > .

2.4. Model: optical component

The paper is focused on the vascular and neurovascular
control system components. However, to provide a complete
system from electrical excitation to optical measurement, an
optical component are also described which is an application
of the Beer–Lambert law.

Many investigators report masses or concentrations of
HbO2 and HbR, which are the output of the vascular com-
ponent of the model rather than the absorption spectra of light
at each pixel. If, however, the absorption results are desired,
the key tool is the Beer–Lambert law which describes
absorption of light. Since the cortical material is scattering, a
portion of the light illuminating the cortex, after a path of
length b through the cortex during which absorption occurs, is
reradiated from the surface of the cortex and measured. This
application of Beer–Lambert involves two types of scatterers,
HbO2 and HbR, and therefore two absorption cross sections

andHbO HbR2σ σ . Let I0 be the incident radiation intensity and
I be the re-radiated radiation intensity. The Beer–Lambert law
for two types of scatterers is

(
)

I I N

N b

( ) ( )exp ( )

( ) ( ) , (28)

0
HbO HbO

HbR HbR

2 2⎡⎣
⎤⎦

λ λ σ λ

σ λ λ

= −

+

where N NandHbO HbR2 are the number of particles of HbO2

and HbR, respectively, present per unit volume in the volume
through which the beam propagates and path length, both cross
sections, and both intensities depend on the wavelength λ. In
section 2.2, andHbO HbR2μ μ are defined to be the mass of
HbO2 and HbR, respectively, in a pixel and ¯ and ¯HbO HbR2μ μ
are the corresponding values after incorporating the effect of
the point spread function. Effectively add the missing third
dimension of the model by assuming that the pixel has third
dimension zΔ . Then N HbO2 = w¯ ( ) andx y z

HbO HbO2 2μ Δ Δ Δ
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N HbR = w w w¯ ( ), where ( )x y z
HbR HbR HbO HbR2μ Δ Δ Δ converts

¯ ( ¯ )HbO HbR2μ μ with units of (Mass) to number of molecules
which is dimensionless.

3. Results

Much OISI data is published in terms of the time-course of
hemoglobin concentrations, often at a single location.
Therefore, it is possible to compare with the published OISI
data without including in the model a description of the
relationship between cerebral blood flow and volume with the
resulting optical signals. In addition, when only a single
location is considered, the model is further simplified to a
model of a single pixel which implies that no electrical layer
is included. The predictions of the mathematical model are
computed by a program (available from the authors) written
in the Matlab programming language [30].

In both OISI and fMRI experiments, the resulting
electrical signal in the cortex is not known. For this reason,
some of the signals in our model have an arbitrary unit
which is denoted by ‘(Unit)’. This unit eventually cancels
when computing quantities of interest such as HbTμ . In the
neurovascular control component of the model, we use signed
contributions to the homeostasis budget so that e*, the target
value for the homeostasis budget (section 2.2.1,
equations (17) and (18)) can be taken to be zero which needs
no unit. Also in the neurovascular control component of the
model, the Michaelis–Menten conversion of HbO2 to HbR
and energy has the same arbitrary unit for the energy.

Although it is not fundamental to our modeling approach, in
this paper we assume that the hematocrit is constant. Therefore,
in some standard volume, the sum of the masses of oxygenated
and deoxygenated hemoglobin ( HbO HbR2μ μ+ ) is constant; the
sum of the concentrations (c cHbO HbR2 + ) is constant; and, since
hemoglobin only occurs in the two forms, the sum of the frac-
tions ( f fHbO HbR2 + ) is one. Because fractions are restricted to
the interval from 0 to 1, which is not true for concentrations or
masses, the computer program generally uses fractions.

The value of the model is in its ability to represent
and also predict experimental data. Using a range of para-
meters, we demonstrate the use of the model to describe
experimental data from several different laboratories in the
following sections. The parameter values used are a mix of
values from literature and values selected by NRC based on
forward simulations of the model. Simple automatic methods
of selecting parameters, such as numerical minimization by
least squares, are probably not appropriate because small
changes in the timing of high-derivative regions lead to
large least squares errors. In addition, because of the nonlinear
nature of the model, automatic methods would require initial
conditions. One natural choice would be the values used here.

3.1. Nominal parameters

The model describes a single pixel and uses the topology
shown in figure 3(a). Figures 4(A)–(F) shows the response of

the model using a nominal set of parameters. The parameters
we have chosen result in a moderate initial dip in the con-
centration of HbO2 in these noise-free curves.

One feature of interest in the response is the amplitude of
the initial dip in the concentration of HbO2. Figures 4(G)–(H)
describes how the initial dip varies as a function of the two
most important parameters, β (which controls the maximal
rate of conversion of HbO2 to HbR (equations (21)–(22)) and

dτ (which is the time constant for the change in Youngʼs
modulus during dilation (equations (17)–(18))), and demon-
strates that the predictions of the model change from no initial
dip to an initial dip as large as 0.5%.

The range of parameters that appear in the figures is
described in this paragraph. For the neurovascular control
component the parameter ranges are c 0.1

*
HbO2 = –0.2, e* 0=

(Unit), 2.61 10b
12ν ′ = × –8.27 1012× (Unit)/s, 1γ = [31–34],

and 69.58e ,0i j,
δ =↓ –1208.7 (Unit)/s. For the vascular compo-

nent the parameter ranges are a 20 ma,0 μ= , a 2.5v,0 = –

3.0 mμ , P 13300a,0 = Pa, P 6650v,0 = Pa, E 0.28a,0ζ = –0.37
Nm−1, E 0.017v,0ζ = –0.025 Nm−1, 0.005 Pa sη = , l 5a =
mm, l 100v = –500 mμ , N 30= –64, 15.52bν = –484.90
(Unit)/s, 0.9dτ = –1.9 s, 6.8cτ = –1.0 s, 0.15τ =ν s, 0.85α = –

0.9, 1.00β = –1.01, and 0.300
HbO

0
HbT2μ μ = –0.35.

3.2. Description of a fore-paw stimulation experiment

Figure 5 shows the the relative changes in hemoglobin and
oxygenation for an example using OISI to measure neuro-
vascular coupling for an example modeled on [35, figure 3]
which describes the response in a rat to forepaw stimulation at

Figure 3. Block diagrams for the numerical calculations. As in
figure 2, T indicates a purely resistive component with fixed
modulus while  indicates a component with both resistive and
capacitive characteristics and a variable modulus. Conversion of

toHbO HbR2μ μ occurs in and2 3  . Panel (a) The block diagram for
the one-pixel models. The correspondence between the block
diagram and anatomical structures is not perfect, since arteries and
arterioles supply oxygen as well as capillaries [38, 39], but roughly
T describes the large arterial supply, 1 describes the small arteriolar
supply, and 2 describes the capillary bed and more distal structures.
Panel (b) The block diagram for the many-pixel model with the
components corresponding to a single example pixel enclosed by
dotted lines. The additional class of block labeled 3 describes
capillaries and more distal structures that originate in one pixel but
terminate in a second pixel, thereby delivering partially oxygenated
hemoglobin to the second pixel. While only one capillary is shown
(e.g., 2 in panel (a)), the calculations are done with a parallel array
of N capillaries.
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Figure 4. Behavior of the model with nominal parameter values including sensitivity to the parameter values. Behavior of the model

is described by the time course (units of seconds) of percentage changes in (A) concentration of oxygenated hemoglobin (100[( )Q t

Q t

( )

( )

HbO2

HbT

( ) 1]Q

Q

(0)

(0)

HbO2

HbT
− ), (B) concentration of deoxygenated hemoglobin (100[( ) ( ) 1]Q t

Q t

Q

Q

( )

( )

(0)

(0)

HbR

HbT

HbR

HbT
− ), (C) total mass of hemoglobin ( t100( ( )HbTμ

(0) 1)HbTμ − ), (D) arteriolar radius ( a t a100( ( ) (0) 1)− ), (E) Youngʼs modulus ( E t E100( ( ) (0) 1)− ), and (F) maximum rate of conversion
of HbO2 to HbR ( t100( ( ) (0) 1)ν ν − ). The bar indicates the duration of the excitation. Sensitivity of the model to the parameter values is
described by plotting the initial [HbO2] dip amplitude as a function of the parameter value where the value is reported as a percent change in
the nominal value. (G): sensitivity with variation in β which controls the maximal rate of conversion of HbO2 to HbR (equations (21)–(22)).
(H): sensitivity with variation in dτ which is the time constant for the change in Youngʼs modulus during dilation (equations (17)–(18)).
For the neurovascular control component the parameters are c 0.2

*
HbO2 = , e* 0= (Unit), 8.27 10b

12ν ′ = × (Unit)/s, 1γ = [31–34], and
1208.7e ,0i j,

δ =↓ (Unit)/s, while for the vascular component the parameters are a 20 ma,0 μ= , a 2.5 mv,0 μ= , P 13300a,0 = Pa, P 6650v,0 = Pa,

E 0.37a,0ζ = N m−1, E 0.17v,0ζ = N m−1, 0.005 Pa sη = , l 5a = mm, l 100 mv μ= , N 64= , 484.90bν = (Unit)/s, 1dτ = s, 1cτ = s,

0.15τ =ν s, 0.9α = , 1.01β = , and 0.30
HbO

0
HbT2μ μ = . In the absence of the electrical layer, the input to the budget equation (equation (13))

is directly controlled. The excitation (p t( ) in equation (16)) lasts 2 s and is a sequence of positive-going pulses where the time interval
between the leading edges of sequential pulses is 0.05 s (i.e., 20 Hz).
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3 Hz for 10 s. The data is for a single pixel and so the
topology shown in figure 3(a) is used. This is a longer
duration stimulation than the 2 s duration of the stimulation in
figure 4 and therefore the duration of the response is longer.
More interestingly, and similar to the experimental data in
[35, figure 3], the decay from the peak signals is in two phases
with an intermediate plateau. The initial peak in HbO2 is due
to the presence of the temporal derivative of the Youngʼs
modulus, i.e., td dEδ , in equation (8).

3.3. Description of a whisker-pad stimulation experiment at
multiple stimulation frequencies

Single-pixel experimental data show that the relationship
between the frequency of whisker stimulation and neurovas-
cular coupling is nonlinear and this behavior is captured by
the model described in this paper using the topology of
figure 3(a). Figure 6 shows hemoglobin and cerebral blood
flow curves for an example modeled on [29, ‘awake’ panels
of figure 6, p 39] which combines OISI and and laser Doppler
flowmetry experiments done sequentially [29, p 35, column 1,
paragraph 2]. While the example in figure 5 considered an

input of long duration, this considers an input of various
frequencies, including higher frequencies up to 40 Hz,
through a rat whisker pad by electrical stimulation. As in the
experimental data, there is a strong frequency dependence in
the response amplitude of the model. The whisker repre-
sentation in the somatosensory cortex of rodents is a favorite
system in which to study neurovascular coupling in response
to simulation of whisker because it is easy to apply varying
temporal and spatial patterns. The evoked neural activity in
somatosensory cortex and the neurovascular coupling
response to a temporal series of stimulations is not simply the
sum of the response to a single stimulation with appropriate
delays. Changing the frequency or number of stimulation
events results in nonlinear response in blood flow and oxy-
genation dynamics. Figure 6 demonstrates that model para-
meters can be chosen such that the modelʼs predictions and
the experimentally observed signals are similar.

3.4. Demonstration of the nonlinear response to multiple
simultaneous stimulations at one location

When the neurovascular system receives multiple stimuli at
the same time and location, the total response of the system is
not the sum of the responses to each of the stimuli when
presented as an isolated stimulus. Figure 7 demonstrates this
effect (a nonlinear superposition effect) with two examples
both in single-pixel circumstances using the topology of
figure 3(a). The inputs are the summation of two signals of
different amplitudes or of different frequencies. Both the
actual output of the model and the linear superposition of the
individual outputs that occur when the two stimulus signals
are presented separately are shown. The actual outputs are
substantially smaller in amplitude than the linear super-
positions of the individual outputs thereby demonstrating the
nonlinear superposition effect.

3.5. Response to multiple stimuli in different locations

Much of the quantitative published data concerns the response
at a single point, i.e., a single pixel, to a stimulus at a single
point, e.g., a whisker stimulation. However, a common use of
OISI and fMRI is to infer the spatial location of the neuronal
activity due to a stimulation. For instance, the rodent whisker
system is used to study the spatial relationship between signal
generated by stimulating different combination of whiskers.
As in the temporal super position of whisker deflections
(section 3.4), the stimulation of multiple whiskers at the same
time also does not result in neural or vascular responses that
can be predicted by a summation of the response to a single
whisker with appropriate spatial translations. The model
presented in this paper describes a 2D array of pixels
responding to a 2D input signal. The multi-pixel topology of
figure 3(b) is used. In figure 8 we show the 2D response of the
model as an image at various times in response to a single
spatially-restricted stimulation and in response to a pair of
spatially-restricted stimulations. The major point is the mod-
elʼs prediction of a sublinear superposition of the responses to
the pair of stimuli.

Figure 5. Forepaw stimulation. Simulated trajectories (time unit

of seconds) of oxygenated (100[( ) ( ) 1]Q t

Q t

Q

Q

( )

( )

(0)

(0)

HbO2

HbT

HbO2

HbT
− ), deoxy-

genated (100[( ) ( ) 1]Q t

Q t

Q

Q

( )

( )

(0)

(0)

HbR

HbT

HbR

HbT
− ), and total ( t100( ( )HbT HbTμ μ

(0) 1)− ) hemoglobin concentrations (Q ratios) or masses (μ) in
response to a 10 s stimulation demonstrating a plateau midway through
the response which is similar to experimental data from [35, figure 3]
which describes the response in a rat to forepaw stimulation at 3 Hz for
10 s. The bar indicates the duration of the excitation. For the neuro-
vascular control component the parameters are c 0.1

*
HbO2 = , e* 0=

(Unit), 5.08 10b
12ν ′ = × (Unit)/s, 1γ = [31–34], and 69.58e ,0i j,

δ =↓

(Unit)/s, while for the vascular component the parameters are aa,0 =
20 mμ , a 3 mv,0 μ= , P 13300a,0 = Pa, P 6650v,0 = Pa, E 0.28a,0ζ =
Nm−1, E 0.025v,0ζ = Nm−1, 0.005 Pa sη = , l 5a = mm, lv=500 mμ ,
N 30= , 15.52bν = (Unit)/s, 1.9dτ = s, 6.8cτ = s, τν is unneeded
since 1β = , 0.85α = , 1β = , and 0.30

HbO
0
HbT2μ μ = . In the absence

of the electrical layer, the input to the budget equation (equation (13)) is
directly controlled. The excitation (p t( ) in equation (16) lasts 10 s and
is a sequence of positive-going pulses where the time interval between
the leading edges of sequential pulses is (1/3) s (i.e., 3 Hz). The budget
(e t( )) starts at the threshold e* and is driven below the threshold by the
pulses, which results in dilation.
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4. Grubbʼs law

As demonstrated in section 3, the model can fit experimental
data. However, it can also describe more abstract relation-
ships. In particular, the model predicts a relationship between
cerebral blood volume and flow in the steady state. In this
section we compute that relationship and compare it with
Grubbʼs law [19] which was first described in 1974 based on
radiotracer experiments in rhesus monkeys.

Denote cerebral blood volume by CBV and cerebral
blood flow by CBF. Grubbʼs law [19, equation 5, p 631] is the
relationship

( )CBV CBV 0.8 CBF CBF , (29)0 0
0.38=

where, in the units of [19, equation 5, p 631] (CBV in
milliliters of blood per 100 gm and CBF in milliliters of blood
per 100 gm per minute), the constants CBV and CBF0 0 have
numerical value 1.

The model described in this manuscript includes tem-
poral and spatial dynamics which are not present in Grubbʼs
law. Therefore, to connect between the model and Grubbʼs

law we assume that the model is spatially homogeneous and
in the steady state. The detailed vascular topology is not
known, so we use the topology of figure 3(b). Spatial
homogeneity implies that the flows between pixels via 3 in
figure 3(b) are zero. Furthermore, Grubbʼs law comes from
imaging studies with voxels that are large compared to the
length of a capillary so that, even in an inhomogeneous
situation, the flow between pixels is small. Being in the steady
state implies that the capacitors are open circuit. Therefore the
entire behavior of the model is determined by the serial
connection of the five resistors R a( ), R P t t( ( ), ( )) 2i j

a
E,

( )
i j,δ ,

R P t t( ( ), ( )) 2i j
a

E,
( )

i j,δ , R P t t( ( ), ( )) 2i j
v

E,
( )

i j,δ , and R P t( ( ),i j
v

,
( )

t P( )) 2 betweenE ai j,δ and ground in the path T , 1 , and 2 of

figure 3(b) after the electrical circuits of figure 2 are inserted
into figure 3(b). CBF is then the ratio of Pa divided by the sum
of these five resistors. The voltages at the four nodes between
the five resistors can all be computed by voltage divider
calculations. Since no current flows through the resistors in 3
in figure 3(b), it follows that P t P t( ) ( )i j

R
i j,

( )
,
(0)= . From the

voltages P t( )i j
a

,
( ) , P t( )i j

v
,
( ) ,and P t( )i j

R
,
( ) , the charges Q P t( ( ),i j

a
,
( )

Figure 6. Whisker pad stimulation. (A): simulated trajectories (time unit of seconds) of oxygenated (100[( ) ( ) 1]Q t

Q t

Q

Q

( )

( )

(0)

(0)

HbO2

HbT

HbO2

HbT
− ),

deoxygenated (100[( ) ( ) 1]Q t

Q t

Q

Q

( )

( )

(0)

(0)

HbR

HbT

HbR

HbT
− ), and total ( t100( ( ) (0) 1)HbT HbTμ μ − ) hemoglobin concentrations (Q ratios) or masses (μ) and

cerebral blood flow ( t100(CBF( ) CBF(0) 1)− ) in response to a stimulations of varying frequencies which are similar to experimental data
from [29, ‘awake’ panels of figure 6, p 39] which describes the response in a rat to electrical stimulation of a whisker pad at 1–40 Hz for 2 s.
In [29], the OISI and and laser Doppler flowmetry experiments were performed sequentially [29, p. 35, column 1, paragraph 2]. In order of
increasing amplitudes, the curves are for stimuli at 1, 2, 5, 10, 20, or 40 Hz. The bar indicates the duration of the excitation. (B): plot of peak
amplitude of total hemoglobin mass ( t100( ( ) (0) 1)HbT HbTμ μ − ) in (A) versus frequency. For the neurovascular control component the
parameters are c 0.08

*
HbO2 = , e* 0= (Unit), 5.0 10b

12ν ′ = × (Unit)/s, 1γ = [31–34], and 353.42e ,0i j,
δ =↓ (Unit)/s, while for the vascular

component the parameters are a 20 ma,0 μ= , a 2.5 mv,0 μ= , P 13300a,0 = Pa, P 6650v,0 = Pa, E 0.37a,0ζ = Nm−1, E 0.017v,0ζ = Nm−1,

0.005 Pa sη = , l 10a = mm, l 30 mv μ= , N 64= , 40.95bν = (Unit)/s, 1.2dτ = s, 0.8cτ = s, 0.15τν s, 0.9α = , 1.005β = , and 0
HbO

0
HbT2μ μ

0.3= . In the absence of the electrical layer, the input to the budget equation (equation 13) is directly controlled. The excitation (p t( ) in
equation (16)) lasts 2 s and is a sequence of positive-going pulses where the time interval between the leading edges of sequential pulses is 1,
0.5, 0.2, 0.1, 0.05, or 0.025 s (i.e., 1, 2, 5, 10, 20, or 40 Hz) in the six different curves. The budget (e t( )) starts at the threshold e* and is
driven below the threshold by the pulses, which results in dilation.
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Figure 7.Nonlinearity with respect to amplitude and frequency of the excitation signals based on the model of figure 4 with the excitations of
figure 6. The solid curves show the response of the system when excited by the sum of two excitations while the dotted curves show the sum
of the responses to the individual excitations. The excitations for the amplitude example in the left column are both the 10 Hz excitation from
figure 6 so the double excitation is the same as either single excitation with an amplitude scaled by a factor of 2. The excitations for the
frequency example in the right column are the 10 and 20 Hz excitations of figure 6. The bar indicates the duration of the excitation.
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t( ))Ei j,δ , Q P t t( ( ), ( ))i j
v

E,
( )

i j,δ , and Q P t t( ( ), ( ))i j
R

E,
( )

i j,δ can be

computed and the sum of these charges is CBV. Since there is
no time dependence, the ‘ t( )’ can be removed and since there
is no spatial dependence the ‘i j, ’ can be removed.

Rather than using the circuit ideas of section 2.1, outlined
in the previous paragraph, to derive the equivalent of Grubbʼs
law for the model described in this manuscript, the underlying
tube ideas of sections 2.1.1 and 2.1.1 are used. The con-
tribution of Q P( , )a

E
( ) δ , corresponding to arterioles, is

ignored since it is much smaller than the contribution
from capillaries. The two contributions from capillaries,
Q P Q P( , ) and ( , )v

E
R

E
( ) ( )δ δ , are combined in terms of a total

length lc of capillaries. In the tube approach, if the length of
the tube is lc and the radius of the tube is ac then

l aCBV . (30)c c
2π=

Furthermore, if the pressure from end-to-end of the tube is Pc

and the resistance to flow through the tube is Rc then

P

R

P

l a

P

l
aCBF

8 8
, (31)c

c

c

c c

c

c
c4
4

⎡⎣ ⎤⎦η π
π
η

= = =

where the second equality is due to Poiseuilleʼs formula
(equation (4)). Solving equation (31) for ac

2 and using the
result in equation (30) gives

l
l

P
l

l

P
CBV CBF

8 8
CBF (32)c

c

c
c

c

c

0.5π
η

π
πη

= =

which is the equivalent of Grubbʼs law for the model
described in this paper.

A more sophisticated resistance formula than Poiseuilleʼs
formula (equation (4)) would alter the ac

4 term in

equation (31) which would alter the 0.5 exponent in
equation (32). Therefore it may be possible to move the
exponent closer to the value in [19, equation 5, p 631]. An
alternative point of view is that viscosity η depends on radius
ac via a power law with unknown exponent, i.e., ac0

2η η= ω

for some value of ω [24, 25], and use Grubbʼs law to estimate
ω. With this point of view, equation (31) becomes

P

a l a

P

l
aCBF

8 8
(33)c

c c c

c

c
c

0
2 4

0

2(2 )

⎡⎣ ⎤⎦η π
π
η

= =
ω

ω−

resulting in

a
l

P
CBF

8
(34)c

c

c

2 0
1 (2 )⎛

⎝⎜
⎞
⎠⎟

η
π

=
ω−

which implies that

l
l

P

l
l

P

CBV CBF
8

8
CBF . (35)

c
c

c

c
c

c

0
1 (2 )

0
1 (2 )

1 (2 )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π
η
π

π
η
π

=

=

ω

ω
ω

−

−
−

In order to match the exponent value of 0.38 in [19, equation
5, p 631], it is necessary to have 1 (2 ) 0.38ω− = which
implies that 0.63ω = − .

Pc can be expressed in terms of Pa and the fundamental
properties of tubes, specifically, E a t, , ,E0 0δ , and l, and the
fundamental property of blood, specifically, η. First solve a
two-component vector fixed-point equation constructed from

Figure 8.Demonstration that the response to multiple stimuli is a nonlinear function of the stimuli. Images from the response of the 2D model
at the indicated times (units of seconds) and a plot of the response along the line drawn in the 1.2 or 1.24 s image. If the response to multiple
stimuli was linear then the response would be as is shown in (B) while the actual response is shown in (C). The parameters are the nominal
parameters of figure 4 with the additional parameters (equation (24)) of c z 4= ∞ = (Pixel) 1− , and p 1.6= except for (B), where p 1= . The
temporal characteristics of the input are unchanged from the input of figure 4 and the pulse amplitude is 5. The same color map is used in all
images of (A) and in all images of (B) and (C). Plots showing the response along the inter-peak line in the 1.2 s and the two 1.24 s images,
which are the images with the maximal response, are displayed in (D).
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two voltage divider formulas, specifically,

( ) ( )
( ) ( )

P P
R P R P

R R P R P

, 2 ,

, ,
, (36)a

a

a
E

v
E

a a
E

v
E

( )
( ) ( )

( ) ( ) ( )

δ δ

δ δ
=

+

+ +

( )
( ) ( )

P P
R P

R R P R P

, 2

, ,
, (37)v

a

v
E

a a
E

v
E

( )
( )

( ) ( ) ( )

δ

δ δ
=

+ +

where R P( , )Eδ is defined by equation (5) and the solution
for P Panda v( ) ( ) is denoted by P Panda v

*
( )

*
( ), respectively. If

the constant R a( ) is also expressed in terms of the diameter of
the arteriole by Poiseuilleʼs formula then the constant η is not
needed because it occurs in every resistance term and
therefore cancels from the ratios. Then P P2c

v
*
( )= . Using this

value for Pc gives the constant for equation (32) in terms of
system blood pressure Pa.

5. Discussion

In this paper we present a set of tools for modeling the cer-
ebral microvasculature and demonstrate a complete model
that can be used to evaluate and predict experimental signals
such as those generated in imaging modalities such as OISI.
Important goals that have been achieved are to describe both
blood flow and cerebral blood volume, leading to use of both
resistors and capacitors; to include the possibility that blood
moves across the imaging field so that models of neurovas-
cular coupling must include the possibility that the blood flow
might enter the microvasculature in one pixel but exit from a
different pixel; and to describe the flows and volumes of both
oxygenated hemoglobin and deoxygenated hemoglobin and
the conversion of oxygenated into deoxygenated hemoglobin.
Part of the model is closely based on physical principles, such
as Kirchhoffʼs current and voltage laws, and Laplaceʼs and
Poiseuilleʼs laws, while other parts are phenomenological,
such as control laws. As demonstrated in section 3, changing
the parameters in the complete model leads to quite different
behaviors, e.g., the presence or absence of an initial decrease
in HbO2 in response to an excitation. Finally, in section 4, the
model is connected to the macroscopic world by deriving
Grubbʼs law from the model.

Because the model is motivated by human neurosurgery
applications, the goal is an approach that is sufficiently simple
such that the parameters in the model can be determined for
individual subjects, e.g., for intra-operative clinical video [6]
from a patient, rather than for populations of subjects.
Determining a model from data originating in a single subject
limits the complexity of the model. For instance, the ethanol
pharmacokinetic models of [36] represent an entire humanʼs
pharmacokinetic response to infused ethanol by as few as two
differential equations. However, in spite of the great simpli-
fication, these models have proven useful in clinical research
because all parameters can be determined from limited data
recorded from a individual subject. For instance, such a
pharmacokinetic model individualized to a particular person
allows computation of a time-varying intravenous ethanol

infusion for that person that achieves a pre-specified time-
varying brain ethanol exposure. Similarly, such an indivi-
dualized model allows computation of infusions that are safe
for use in an MRI machine, i.e., safe without the feedback
provided by regular monitoring of blood ethanol concentra-
tion which is difficult to perform in the MRI machine. A
model of this type predicts physical measurements, but each
parameter may not correspond to a physiological process. For
instance, the parameter might be a time delay while the
physiological process might be a complicated biochemical
network that causes the time delay. However, the parameters
in the model can be inferred from the available data, in this
case OSIS signals, while the physiological process may be too
complicated to be inferred.

Blood ‘stealing’ [37] is the idea that increased cerebral
blood flow and volume in a region of tissue results in less
flow and volume in surrounding tissue. A voltage source
(pressure source) is used to describe the heart but if a voltage
source drives a parallel connection of resistors and one
resistorʼs value decreases leading to increased current through
that resistor there is no effect on the current through the other
resistors. Therefore, replacing the voltage source by a current
source (flow source) or, most general among linear models,
by a Thévenin equivalent circuit (a voltage source in series
with a resistor), would probably make it easier to describe
blood stealing.

Also related to blood ‘stealing’ is the control law for the
Youngʼs modulus of the vessel walls. In equations (17) and
(18), Youngʼs modulus is constrained to be between

E E Eand , where0 0 0α is the resting value. Therefore, under
no circumstances will the Youngʼs modulus be greater than
E0, i.e., in no cases will the vessel further constrict. This could
be changed to introduce a resting Youngʼs modulus Erest such
that E E E0 rest 0α < < in which case vessels could constrict
relative to the resting state which would cause blood ‘steal-
ing’ and there is evidence for this modification [37].

A major issue is the overall topology of the micro-
vascular network. An increasing number of network topolo-
gies are becoming available from TPLSM [10, 11]. A
challenge is that they tend to fragment at depth, and so an
estimation strategy that can determine a fully-connected net-
work is a necessary and challenging part of using such net-
works in models of the type described in this paper.

We have used linear systems to describe the phenom-
enological control laws. However, delays may provide more
parsimonious descriptions. Delay-differential equations are
usually not finite dimensional. However, if the equations are
solved by a forward-Euler approach and all delays are an
integral multiple of the step size in the forward-Euler
approach then it is still possible to solve the resulting
equations in a straightforward manner.

Models constructed with these tools reproduce single-
pixel OISI data from two different laboratories (figures 5 and
6) and reproduce the sublinear superposition seen with mul-
tiple stimuli (figure 8). While the number of parameters is
large for single-pixel models (e.g., sections 3.1–3.4 and 4) the
number of parameters is not large for describing the intra-
operative clinical video [6] that motivates the model. The
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unsolved challenge in applying the model to the clinical video
is to determine the vascular topology from the video.

The methods described in this paper are really a toolbox
for the construction of mathematical models rather than a
single unique mathematical model. After having been vali-
dated on an initial set of experiments, such models can be
used to predict the response to yet unperformed experiments.
For example, predict the response of a mouse with poly-
cythemia vera from the response of a normal mouse by
changing just the blood dynamic viscosity parameter in
equation (4) or predict the response of a mouse in an
experiment done in a second laboratory with a second sti-
mulus paradigm from the response of a mouse in the first
laboratory with the first stimulus paradigm (by modification
of equation (15)) thereby aiding in the comparison of results
between laboratories. The range of prediction is likely limited
to situations with fundamentally the same neurovascular
physiology, e.g., the response of a subject undergoing
spreading depression or an epileptic seizure is probably
poorly predicted by a model validated with normal data.
Finally, models of this type may be useful ways to summarize
intra-operative clinical video [6].

While some of the variables and relationships between
variables in the model described in this paper have physical
meaning, e.g., vessel radius and Laplaceʼs law, other variables
do not, such as the homeostasis budget variable e t( ). In
particular, e t( ) is inspired by the idea that a limiting reagent
exists that can be replenished by blood flow. Although
nutrients or oxygen might contribute to such a dynamic and
the energy stored as ATP or NAD(P)H might follow this
paradigm, this model is not intended to model the con-
centration of any particular substance (section 2.2.3). Fur-
thermore, replenishment of a needed reagent can easily be
replaced by removal of a waste product (section 2.2.3). An
alternative process that would also have a feedback effect on
vascular dynamics would be neurotransmitter recycling.
Similar ideas to the ideas described in this paper might be
applicable, e.g., the homeostasis budget variable e t( ) might
be the mass of a particular neurotransmitter in the synaptic
cleft. Neurotransmitter recycling involves multiple signaling
mechanisms which might not necessarily be individually
modeled, but instead simply lumped into an aggregate con-
trol law.

One unique and powerful feature of this model is that we
were able to use a narrow range of parameters to both
simulate neurovascular coupling responses to somatosensory
stimulation and then use it to predict responses to other
combinations of stimuli. Neurovascular-coupling based ima-
ging is increasingly being used clinically as a potential
diagnostic tool or surgical planning tool. The challenge in
such applications is that there is high variability in the
response of individual subjects. This model, which can use
the response to a experimentally tractable stimulus to predict
the response to another stimulus, could be a step in devel-
oping tools for such future applications.
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