Limitations of collateral flow after occlusion of a single cortical penetrating arteriole

Nozomi Nishimura*, Nathanael L Rosidi*, Costantino Iadecola and Chris B Schaffer

Journal of Cerebral Blood Flow & Metabolism (2010)

 View Abstract

Occlusions of penetrating arterioles, which plunge into cortex and feed capillary beds, cause severe decreases in blood flow and are potential causes of ischemic microlesions. However, surrounding arterioles and capillary beds remain flowing and might provide collateral flow around the occlusion. We used femtosecond laser ablation to trigger clotting in single penetrating arterioles in rat cortex and two-photon microscopy to measure changes in microvessel diameter and red blood cell speed after the clot. We found that after occlusion of a single penetrating arteriole, nearby penetrating and surface arterioles did not dilate, suggesting that alternate blood flow routes are not actively recruited. In contrast, capillaries showed two types of reactions. Capillaries directly downstream from the occluded arteriole dilated after the clot, but other capillaries in the same vicinity did not dilate. This heterogeneity in capillary response suggests that signals for vasodilation are vascular rather than parenchymal in origin. Although both neighboring arterioles and capillaries dilated in response to topically applied acetylcholine after the occlusion, the flow in the territory of the occluded arteriole did not improve. Collateral flow from neighboring penetrating arterioles is neither actively recruited nor effective in improving blood flow after the occlusion of a single penetrating arteriole.

 Full Access
 Supplement 1
 Supplement 2
 Supplement 3

Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects

Huseyin C. Yalcin, Akshay Shekhar, Nozomi Nishimura, Ajinkya A. Rane, Chris B. Schaffer, and Jonathan T. Butcher

Am J Physiol Heart Circ Physiol (2010)

 View Abstract

Embryonic heart formation is driven by complex feedback between genetic and hemodynamic stimuli. Clinical congenital heart defects (CHD), however, often manifest as localized microtissue malformations with no underlying genetic mutation, suggesting that altered hemodynamics during embryonic development may play a role. An investigation of this relationship has been impaired by a lack of experimental tools that can create locally targeted cardiac perturbations. Here we have developed noninvasive optical techniques that can modulate avian cardiogenesis to dissect relationships between alterations in mechanical signaling and CHD. We used two-photon excited fluorescence microscopy to monitor cushion and ventricular dynamics and femtosecond pulsed laser photoablation to target micrometer-sized volumes inside the beating chick hearts. We selectively photoablated a small (100 m radius) region of the superior atrioventricular (AV) cushion in Hamburger- Hamilton 24 chick embryos. We quantified via ultrasound that the disruption causes AV regurgitation, which resulted in a venous pooling of blood and severe arterial constriction. At 48 h postablation, quantitative X-ray microcomputed tomography imaging demonstrated stunted ventricular growth and pronounced left atrial dilation. A histological analysis demonstrated that the laser ablation produced defects localized to the superior AV cushion: a small quasispherical region of cushion tissue was completely obliterated, and the area adjacent to the myocardial wall was less cellularized. Both cushions and myocardium were significantly smaller than sham-operated controls. Our results highlight that two-photon excited fluorescence coupled with femtosecond pulsed laser photoablation should be considered a powerful tool for studying hemodynamic signaling in cardiac morphogenesis through the creation of localized microscale defects that may mimic clinical CHD

 Full Access

Sort by Archive Year

Sort by Principal Investigators