logo

Diverse Inflammatory Response After Cerebral Microbleeds Includes Coordinated Microglial Migration and Proliferation

Sung Ji Ahn, Josef Anrather, Nozomi Nishimura, Chris B. Schaffer

Stroke (2018)

 View Abstract

Cerebral microbleeds are linked to cognitive decline, but it remains unclear how they impair neuronal function. Infarction is not typically observed near microbleeds, suggesting more subtle mechanisms, such as inflammation, may play a role. Because of their small size and largely asymptomatic nature, real-time detection and study of spontaneous cerebral microbleeds in humans and animal models are difficult. We used in vivo 2-photon microscopy through a chronic cranial window in adult mice to follow the inflammatory response after a cortical microhemorrhage of ≈100 μm diameter, induced by rupturing a targeted cortical arteriole with a laser. The inflammatory response included the invasion of blood-borne leukocytes, the migration and proliferation of brain-resident microglia, and the activation of astrocytes. Nearly all inflammatory cells responding to the microhemorrhage were brain-resident microglia, but a small number of CX3CR1+ and CCR2+ macrophages, ultimately originating from the invasion of blood-borne monocytes, were also found near the lesion. We found a coordinated pattern of microglia migration and proliferation, where microglia within 200 μm of the microhemorrhage migrated toward the lesion over hours to days. In contrast, microglia proliferation was not observed until ≈40 hours after the lesion and occurred primarily in a shell-shaped region where the migration of microglia decreased their local density. These data suggest that local microglia density changes may trigger proliferation. Astrocytes activated in a similar region as microglia but delayed by a few days. By 2 weeks, this inflammatory response had largely resolved.Although microhemorrhages are small in size, the brain responds to a single bleed with an inflammatory response that involves brain-resident and blood-derived cells, persists for weeks, and may impact the adjacent brain microenvironment.

 Full Access

In Vivo Calcium Imaging of Cardiomyocytes in the Beating Mouse Heart With Multiphoton Microscopy

Jason S. Jones, David M. Small and Nozomi Nishimura

Frontiers in physiology (2018)

 View Abstract

Background: Understanding the microscopic dynamics of the beating heart has been challenging due to the technical nature of imaging with micrometer resolution while the heart moves. The development of multiphoton microscopy has made in vivo, cell-resolved measurements of calcium dynamics and vascular function possible in motionless organs such as the brain. In heart, however, studies of in vivo interactions between cells and the native microenvironment are behind other organ systems. Our goal was to develop methods for intravital imaging of cardiac structural and calcium dynamics with microscopic resolution. Methods: Ventilated mice expressing GCaMP6f, a genetically encoded calcium indicator, received a thoracotomy to provide optical access to the heart. Vasculature was labeled with an injection of dextran-labeled dye. The heart was partially stabilized by a titanium probe with a glass window. Images were acquired at 30 frames per second with spontaneous heartbeat and continuously running, ventilated breathing. The data were reconstructed into three-dimensional volumes showing tissue structure, vasculature, and GCaMP6f signal in cardiomyocytes as a function of both the cardiac and respiratory cycle. Results: We demonstrated the capability to simultaneously measure calcium transients, vessel size, and tissue displacement in three dimensions with micrometer resolution. Reconstruction at various combinations of cardiac and respiratory phase enabled measurement of regional and single-cell cardiomyocyte calcium transients (GCaMP6f fluorescence). GCaMP6f fluorescence transients in individual, aberrantly firing cardiomyocytes were also quantified. Comparisons of calcium dynamics (risetime and tau) at varying positions within the ventricle wall showed no significant depth dependence. Conclusion: This method enables studies of coupling between contraction and excitation during physiological blood perfusion and breathing at high spatiotemporal resolution. These capabilities could lead to a new understanding of normal and disease function of cardiac cells.

 Full Access

In Vivo Femtosecond Laser Subsurface Cortical Microtransections Attenuate Acute Rat Focal Seizures

Shivathmihai Nagappan, Lena Liu, Robert Fetcho, John Nguyen, Nozomi Nishimura, Ryan E. Radwanski, Seth Lieberman, Eliza Baird-Daniel, Hongtao Ma2,3, Mingrui Zhao, Chris B. Schaffer and Theodore H. Schwartz

Cerebral Cortex (2018)

 View Abstract

Recent evidence shows that seizures propagate primarily through supragranular cortical layers. To selectively modify these circuits, we developed a new technique using tightly focused, femtosecond infrared laser pulses to make as small as ~100 µm-wide subsurface cortical incisions surrounding an epileptic focus. We use this “laser scalpel” to produce subsurface cortical incisions selectively to supragranular layers surrounding an epileptic focus in an acute rodent seizure model. Compared with sham animals, these microtransections completely blocked seizure initiation and propagation in 1/3 of all animals. In the remaining animals, seizure frequency was reduced by 2/3 and seizure propagation reduced by 1/3. In those seizures that still propagated, it was delayed and reduced in amplitude. When the recording electrode was inside the partially isolated cube and the seizure focus was on the outside, the results were even more striking. In spite of these microtransections, somatosensory responses to tail stimulation were maintained but with reduced amplitude. Our data show that just a single enclosing wall of laser cuts limited to supragranular layers led to a significant reduction in seizure initiation and propagation with preserved cortical function. Modification of this concept may be a useful treatment for human epilepsy.

 Full Access

Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging

Jiahn Choi, Nikolai Rakhilin, Poornima Gadamsetty, Daniel J. Joe, Tahmineh Tabrizian, Steven M. Lipkin, Derek M. Hu man, Xiling Shen & Nozomi Nishimura

Scientific Reports (2018)

 View Abstract

Despite the continuous renewal and turnover of the small intestinal epithelium, the intestinal crypt maintains a ‘soccer ball-like’, alternating pattern of stem and Paneth cells at the base of the crypt. To study the robustness of the alternating pattern, we used intravital two-photon microscopy in mice with uorescently-labeled Lgr5+ intestinal stem cells and precisely perturbed the mosaic pattern with femtosecond laser ablation. Ablation of one to three cells initiated rapid motion of crypt cells that restored the alternation in the pattern within about two hours with only the rearrangement of pre-existing cells, without any cell division. Crypt cells then performed a coordinated dilation of the crypt lumen, which resulted in peristalsis-like motion that forced damaged cells out of the crypt. Crypt cell motion was reduced with inhibition of the ROCK pathway and attenuated with old age, and both resulted in incomplete pattern recovery. This suggests that in addition to proliferation and self-renewal, motility of stem cells is critical for maintaining homeostasis. Reduction of this newly-identi ed behavior of stem cells could contribute to disease and age-related changes.

 Full Access

Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy

David M. Small, Jason S. Jones, Irwin I. Tendler, Paul E. Miller, Andre Ghetti, and Nozomi Nishimura

Biomedical Optics Express (2018)

 View Abstract

Multiphoton microscopy using laser sources in the mid-infrared range (MIR, 1,300 nm and 1,700 nm) was used to image atherosclerotic plaques from murine and human samples. Third harmonic generation (THG) from atherosclerotic plaques revealed morphological details of cellular and extracellular lipid deposits. Simultaneous nonlinear optical signals from the same laser source, including second harmonic generation and endogenous fluorescence, resulted in label-free images of various layers within the diseased vessel wall. The THG signal adds an endogenous contrast mechanism with a practical degree of specificity for atherosclerotic plaques that complements current nonlinear optical methods for the investigation of cardiovascular disease. Our use of whole-mount tissue and backward scattered epi-detection suggests THG could potentially be used in the future as a clinical tool.

 Full Access

Sort by Archive Year

Sort by Principal Investigators