Michael L. Buttolph, Pavel Sidorenko, Chris B. Schaffer, Frank W. Wise
Optics Letters (2022)
We demonstrate an optical parametric chirped-pulse amplifier (OPCPA) that uses birefringence phase matching in a step-index single-mode optical fiber. The OPCPA is pumped with chirped pulses that can be compressed to sub-30-fs duration. The signal (idler) pulses are generated at 905 nm (1270 nm), have 26 nJ (20 nJ) pulse energy, and are compressible to 70 fs duration. The short compressed signal and idler pulse durations are enabled by the broad bandwidth of the pump pulses. Numerical simulations guiding the design are consistent with the experimental results and predict that scaling to higher pulse energies will be possible. Forgoing a photonic crystal fiber for phase-matching offers practical advantages, including allowing energy scaling with mode area.
Marlene E. Da Vitoria Lobo, Nick Weir, Lydia Hardowar, Yara Al Ojaimi, Ryan Madden, Alex Gibson, Samuel M. Bestall, Masanori Hirashima, Chris B. Schaffer, Lucy F. Donaldson, David O. Bates, Richard Philip Hulse
Pain (2022)
Neuropathic pain, such as that seen in diabetes mellitus, results in part from central sensitisation in the dorsal horn. However, the mechanisms responsible for such sensitisation remain unclear. There is evidence that disturbances in the integrity of the spinal vascular network can be causative factors in the development of neuropathic pain. Here we show that reduced blood flow and vascularity of the dorsal horn leads to the onset of neuropathic pain. Using rodent models (type 1 diabetes and an inducible endothelial-specific vascular endothelial growth factor receptor 2 knockout mouse) that result in degeneration of the endothelium in the dorsal horn, we show that spinal cord vasculopathy results in nociceptive behavioural hypersensitivity. This also results in increased hypoxia in dorsal horn neurons, depicted by increased expression of hypoxia markers such as hypoxia inducible factor 1a, glucose transporter 3, and carbonic anhydrase 7. Furthermore, inducing hypoxia through intrathecal delivery of dimethyloxalylglycine leads to the activation of dorsal horn neurons as well as mechanical and thermal hypersensitivity. This shows that hypoxic signalling induced by reduced vascularity results in increased hypersensitivity and pain. Inhibition of carbonic anhydrase activity, through intraperitoneal injection of acetazolamide, inhibited hypoxia-induced pain behaviours. This investigation demonstrates that induction of a hypoxic microenvironment in the dorsal horn, as occurs in diabetes, is an integral process by which neurons are activated to initiate neuropathic pain states. This leads to the conjecture that reversing hypoxia by improving spinal cord microvascular blood flow could reverse or prevent neuropathic pain.
Kawasi Lett, Yuying Zhang, Nozomi Nishimura
American Journal of Rhinology & Allergy (2022)
Background: Minimally-invasive ablation with radio frequency (RF) and cryoablation have been widely adopted to treat conditions with aberrant neural activity such as excessive mucus production in rhinitis, but neurological and inflammatory effects on treated tissues are poorly understood. Objective: To gain an understanding of the physiological changes caused by nerve ablation using RF and cryoablation devices. Methods: Using clinical devices for rhinitis treatment that ablate nerves with access from the nasal cavity, we applied temperature-controlled RF and cryoablation to rat sciatic nerves. To model the ablation through mucosal tissue similarly to the rhinitis procedure, RF ablation and cryoablation were applied through a layer of muscle. Results: Both ablation techniques induced acute and sustained neurodegeneration visualized with histological sections at two days and one month after treatment. After both treatments, rats showed a change in muscle tone, but small increases in sensitivity measured by a von Frey test were only observed 2 days after cryoablation and one month after the RF ablation. Both treatments caused reductions in nerve conduction velocity at one month after treatment. Inflammation in treated nerves and surrounding tissues that persisted to one month. Conclusions: The two neurolytic devices used in the clinic work similarly by axonal disintegration and which leads to disruption of electrical signals. The data suggest that these methods are effective methods of nerve ablation that could be used to treat diseases related to elevated neuron activity such as rhinitis.
Po-Cheng Chen, Catharine G. Young, Chris B. Schaffer, Amit Lal
Microsystems and Nanoengineering (2022)
Electrical neural recordings measured using direct electrical interfaces with neural tissue suffer from a short lifespan because the signal strength decreases over time. The inflammatory response to the inserted microprobe can create insulating tissue over the electrical interfaces, reducing the recorded signal below noise levels. One of the factors contributing to this inflammatory response is the tissue damage caused during probe insertion. Here, we explore the use of ultrasonic actuation of the neural probe during insertion to minimize tissue damage in mice. Silicon neural microprobes were designed and fabricated with integrated electrical recording sites and piezoelectric transducers. The microprobes were actuated at ultrasonic frequencies using integrated piezoelectric transducers. The microprobes were inserted into mouse brains under a glass window over the brain surface to image the tissue surrounding the probe using two-photon microscopy. The mechanical force required to penetrate the tissue was reduced by a factor of 2–3 when the microprobe was driven at ultrasonic frequencies. Tissue histology at the probe insertion site showed a reduced area of damage and decreased microglia counts with increasing ultrasonic actuation of the probes. Twophoton imaging of the microprobe over weeks demonstrated stabilization of the inflammatory response. Recording of electrical signals from neurons over time suggests that microprobes inserted using ultrasound have a higher signal-to-noise ratio over an extended time period.
Muhammad Ali, Kaja Falkenhain, Brendah N Njiru, Muhammad Murtaza-Ali, Nancy E Ruiz-Uribe, Mohammad Haft-Javaherian, Stall Catchers, Nozomi Nishimura, Chris B Schaffer, Oliver Bracko
Brain (2022)
Increased incidence of stalled capillary blood flow caused by adhesion of leucocytes to the brain microvascular endothelium leads to a 17% reduction of cerebral blood flow (CBF) and exacerbates short-term memory loss in multiple mouse models of Alzheimer’s disease. Here, we report that Vascular Endothelial Growth Factor (VEGF) signaling at the luminal side of the brain microvasculature plays an integral role in the capillary stalling phenomenon of the APP/PS1 mouse model. Administration of the anti-mouse VEGF-A164 antibody, an isoform that inhibits blood brain barrier (BBB) hyperpermeability, reduced the number of stalled capillaries within an hour of injection, leading to an immediate increase in average capillary blood flow but not capillary diameter. VEGF-A inhibition also reduced the overall eNOS protein concentrations, increased occludin levels, and decreased the penetration of circulating Evans Blue dye across the BBB into the brain parenchyma, suggesting increased BBB integrity. Capillaries prone to neutrophil adhesion after anti-VEGF-A treatment also had lower occludin concentrations than flowing capillaries. Taken together, our findings demonstrate that VEGF-A signaling in APP/PS1 mice contributes to aberrant eNOS/occludin- associated BBB permeability, increases the incidence of capillary stalls, and leads to reductions in CBF. Reducing leucocyte adhesion by inhibiting luminal VEGF signaling may provide a novel and well-tolerated strategy for improving brain microvascular blood flow in Alzheimer’s disease. patients.