logo

Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers

G. D. Calvey, A. M. Katz, C. B. Schaffer, and L. Pollack,

Structural dynamics (2016)

 View Abstract

Knowledge of protein structure provides essential insight into function, enhancing our understanding of diseases and enabling new treatment development. X-ray crystallography has been used to solve the structures of more than 100 000 proteins; however, the vast majority represent long-lived states that do not capture the functional motions of these molecular machines. Reactions triggered by the addition of a ligand can be the most challenging to detect with crystallography because of the difficulty of synchronizing reactions to create detectable quantities of transient states. The development of X-ray free electron lasers (XFELs) and serial femtosecond crystallography (SFX) enables new approaches for solving protein structures following the rapid diffusion of ligands into micron sized protein crystals. Conformational changes occurring on millisecond timescales can be detected and time-resolved. Here, we describe a new XFEL injector which incorporates a microfluidic mixer to rapidly combine reactant and sample milliseconds before the sample reaches the X-ray beam. The mixing injector consists of bonded, concentric glass capillaries. The fabrication process, employing custom laser cut centering spacers and UV curable epoxy, ensures precise alignment of capillaries for repeatable, centered sample flow and dependable mixing. Crystal delivery capillaries are 50 or 75 μm in diameter and can contain an integrated filter depending on the demands of the experiment. Reaction times can be varied from submillisecond to several hundred milliseconds. The injector features rapid and uniform mixing, low sample dilution, and high hit rates. It is fully compatible with existing SFX beamlines.

 Get it!

Simultaneous Optical and Electrical In Vivo Analysis of the Enteric Nervous System

Rakhilin N, Barth B, Choi J, Munoz N, Kulkarni S, LaVinka C, Dong X, Spencer M, Pasricha P, Nishimura N, Jones J, Small D, Cheng YT, Cao Y, Kan E, Shen X

Nat Commun (2016)

 View Abstract

The enteric nervous system (ENS) is a major division of the nervous system and vital to the gastrointestinal (GI) tract and its communication with the rest of the body. Unlike the brain and spinal cord, relatively little is known about the ENS in part because of the inability to directly monitor its activity in live animals. Here, we integrate a transparent graphene sensor with a customized abdominal window for simultaneous optical and electrical recording of the ENS in vivo. The implanted device captures ENS responses to neurotransmitters, drugs and optogenetic manipulation in real time.

 Get it!

The origin and implementation of the Broadening Experiences in Scientific Training programs: an NIH common fund initiative

F. J. Meyers, A. Mathur, C. N. Fuhrmann, T. C. O’Brien, I. Wefes, P. A. Labosky, D. S. Duncan, A. August, A. Feig, K. L. Gould, M. J. Friedlaner, C. B. Schaffer, A. Van Wart, R. Chalkley

FASEB Journal (2016)

 View Abstract

Recent national reports and commentaries on the current status and needs of the U.S. biomedical research workforce have highlighted the limited career development opportunities for predoctoral and postdoctoral trainees in academia, yet little attention is paid to preparation for career pathways outside of the traditional faculty path. Recognizing this issue, in 2013, the U.S. National Institutes of Health (NIH) Common Fund issued a request for application titled "NIH Director's Biomedical Research Workforce Innovation Award: Broadening Experiences in Scientific Training (BEST)." These 5-yr 1-time grants, awarded to 17 single or partnering institutions, were designed to develop sustainable approaches to broaden graduate and postgraduate training, aimed at creating training programs that reflect the range of career options that trainees may ultimately pursue. These institutions have formed a consortium in order to work together to develop, evaluate, share, and disseminate best practices and challenges. This is a first report on the early experiences of the consortium and the scope of participating BEST programs. In this report, we describe the state of the U.S. biomedical workforce and development of the BEST award, variations of programmatic approaches to assist with program design without BEST funding, and novel approaches to engage faculty in career development programs. To test the effectiveness of these BEST programs, external evaluators will assess their outcomes not only over the 5 yr grant period but also for an additional 10 yr beyond award completion.

 Get it!

TRAIL-coated leukocytes that prevent the bloodborne metastasis of prostate cancer,”

W.C. Wayne, S. Chandrasekaran, M. J. Mitchell, M. F. Chan, R. E. Lee, C. B. Schaffer, M. R. King

Journal of Controlled Release (2016)

 View Abstract

Prostate cancer, once it has progressed from its local to metastatic form, is a disease with poor prognosis and limited treatment options. Here we demonstrate an approach using nanoscale liposomes conjugated with E-selectin adhesion protein and Apo2L/TRAIL (TNF-related apoptosis-inducing ligand) apoptosis ligand that attach to the surface of leukocytes and rapidly clear viable cancer cells from circulating blood in the living mouse. For the first time, it is shown that such an approach can be used to prevent the spontaneous formation and growth of metastatic tumors in an orthotopic xenograft model of prostate cancer, by greatly reducing the number of circulating tumor cells. We conclude that the use of circulating leukocytes as a carrier for the anti-cancer protein TRAIL could be an effective tool to directly target circulating tumor cells for the prevention of prostate cancer metastasis, and potentially other cancers that spread through the bloodstream.

 Get it!

A Mathematical Model Relating Cortical Oxygenated And Deoxygenated Hemoglobin Flows And Volumes To Neural Activity

Nathan Cornelius, Nozomi Nishimura, Minah Suh, Theodore Schwartz, and Peter Doerschuk

Journal of Neural Engineering (2015)

 View Abstract

Objective. To describe a toolkit of components for mathematical models of the relationship between cortical neural activity and space-resolved and time-resolved flows and volumes of oxygenated and deoxygenated hemoglobin motivated by optical intrinsic signal imaging (OISI). Approach. Both blood flow and blood volume and both oxygenated and deoxygenated hemoglobin and their interconversion are accounted for. Flow and volume are described by including analogies to both resistive and capacitive electrical circuit elements. Oxygenated and deoxygenated hemoglobin and their interconversion are described by generalization of Kirchhoff's laws based on well-mixed compartments. Main results. Mathematical models built from this toolkit are able to reproduce experimental single-stimulus OISI results that are described in papers from other research groups and are able to describe the response to multiple-stimuli experiments as a sublinear superposition of responses to the individual stimuli. Significance. The same assembly of tools from the toolkit but with different parameter values is able to describe effects that are considered distinctive, such as the presence or absence of an initial decrease in oxygenated hemoglobin concentration, indicating that the differences might be due to unique parameter values in a subject rather than different fundamental mechanisms.

 Get it!

Characterization of blood flow in the mouse dorsal spinal venous system before and after dorsal spinal vein occlusion

M. J. Farrar, J. D. Rubin, D. M. Diago, and C. B. Schaffer

Journal of Cerebral Blood flow and Metabolism (2015)

 View Abstract

The availability of transgenic strains has made the laboratory mouse a popular model for the study of healthy and diseased state spinal cord (SC). Essential to identifying physiologic and pathologic events is an understanding of the microvascular network and flow patterns of the SC. Using 2-photon excited fluorescence (2PEF) microscopy we performed in vivo measurements of blood flow in the lower thoracic portion of the mouse dorsal spinal vein (dSV) and in the first upstream branches supplying it, denoted as dorsal ascending venules (dAVs). We found that the dSV had large radiculomedullary veins (RMVs) exiting the SC, and that flow in the dSV between pairs of RMVs was bidirectional. Volumetric flow increased in each direction away from the point of bifurcation. Flow in the upstream dAVs varied with diameter in a manner consistent with a constant distal pressure source. By performing ex vivo 2PEF microscopy of fluorescent-gel perfused tissue, we created a 3-D map of the dorsal spinal vasculature. From these data, we constructed a simple model that predicted changes in the flow of upstream branches after occlusion of the dSV in different locations. Using an atraumatic model of dSV occlusion, we confirmed the predictions of this model in vivo.

 Get it!

Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting

Chen HJ, Sun J, Huang Z, Hou H Jr, Arcilla M, Rakhilin N, Joe DJ, Choi J, Gadamsetty P, Milsom J, Nandakumar G, Longman R, Zhou XK, Edwards R, Chen J, Chen KY, Bu P, Wang L, Xu Y, Munroe R, Abratte C, Miller AD, Gümüş ZH, Shuler M, Nishimura N, Edelmann W, Shen X, Lipkin SM.

Nature Biotechnology (2015)

 View Abstract

Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired subcutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening.

 Get it!

Growth And Hemodynamics After Early Embryonic Aortic Arch Occlusion

Lindsey SE, Menon PG, Kowalski WJ, Shekhar A, Yalcin HC, Nishimura N, Schaffer CB, Butcher JT, Pekkan K.

Biomech Model Mechanobiol (2015)

 View Abstract

The majority of severe clinically significant forms of congenital heart disease (CHD) are associated with great artery lesions, including hypoplastic, double, right or interrupted aortic arch morphologies. While fetal and neonatal interventions are advancing, their potential ability to restore cardiac function, optimal timing, location, and intensity required for intervention remain largely unknown. Here, we combine computational fluid dynamics (CFD) simulations with in vivo experiments to test how individual pharyngeal arch artery hemodynamics alter as a result of local interventions obstructing individual arch artery flow. Simulated isolated occlusions within each pharyngeal arch artery were created with image-derived three-dimensional (3D) reconstructions of normal chick pharyngeal arch anatomy at Hamburger-Hamilton (HH) developmental stages HH18 and HH24. Acute flow redistributions were then computed using in vivo measured subject-specific aortic sinus inflow velocity profiles. A kinematic vascular growth-rendering algorithm was then developed and implemented to test the role of changing local wall shear stress patterns in downstream 3D morphogenesis of arch arteries. CFD simulations predicted that altered pressure gradients and flow redistributions were most sensitive to occlusion of the IVth arches. To evaluate these simulations experimentally, a novel in vivo experimental model of pharyngeal arch occlusion was developed and implemented using two-photon microscopy-guided femtosecond laser-based photodisruption surgery. The right IVth arch was occluded at HH18, and resulting diameter changes were followed for up to 24 h. Pharyngeal arch diameter responses to acute hemodynamic changes were predicted qualitatively but poorly quantitatively. Chronic growth and adaptation to hemodynamic changes, however, were predicted in a subset of arches. Our findings suggest that this complex biodynamic process is governed through more complex forms of mechanobiological vascular growth rules. Other factors in addition to wall shear stress or more complex WSS rules are likely important in the long-term arterial growth and patterning. Combination in silico/experimental platforms are essential for accelerating our understanding and prediction of consequences from embryonic/fetal cardiovascular occlusions and lay the foundation for noninvasive methods to guide CHD diagnosis and fetal intervention.

 Get it!

Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture,

A.Y. Shih, C. Ruhlmann, P. Blinder, A. Devor, P. J. Drew, B. Friedman, P. M. Knutsen, P. D. Lyden, C. Mateo, L. Mellander, N. Nishimura, C. B. Schaffer, P. S. Tsai, and D. Kleinfeld

Microcirculation (2015)

 View Abstract

We review the organizational principles of the cortical vasculature and the underlying patterns of blood flow under normal conditions and in response to occlusion of single vessels. The cortex is sourced by a two-dimensional network of pial arterioles that feeds a three-dimensional network of subsurface microvessels in close proximity to neurons and glia. Blood flow within the surface and subsurface networks is largely insensitive to occlusion of a single vessel within either network. However, the penetrating arterioles that connect the pial network to the subsurface network are bottlenecks to flow; occlusion of even a single penetrating arteriole results in the death of a 500 μm diameter cylinder of cortical tissue despite the potential for collateral flow through microvessels. This pattern of flow is consistent with that calculated from a full reconstruction of the angioarchitecture. Conceptually, collateral flow is insufficient to compensate for the occlusion of a penetrating arteriole because penetrating venules act as shunts of blood that flows through collaterals. Future directions that stem from the analysis of the angioarchitecture concern cellular-level issues, in particular the regulation of blood flow within the subsurface microvascular network, and system-level issues, in particular the role of penetrating arteriole occlusions in human cognitive impairment.

 Get it!

Ultra-large field-of-view two-photon microscopy

P. S. Tsai, C. Mateo, J. J. Field, C. B. Schaffer, M. E. Anderson, and D. Kleinfeld

Optics Express (2015)

 View Abstract

We present a two-photon microscope that images the full extent of murine cortex with an objective-limited spatial resolution across an 8 mm by 10 mm field. The lateral resolution is approximately 1 µm and the maximum scan speed is 5 mm/ms. The scan pathway employs large diameter compound lenses to minimize aberrations and performs near theoretical limits. We demonstrate the special utility of the microscope by recording resting-state vasomotion across both hemispheres of the murine brain through a transcranial window and by imaging histological sections without the need to stitch.

 Get it!
First    Previous Next    Last

Sort by Archive Year

Sort by Principal Investigators