Mechanistic insight into the TH1-biased immune response to recombinant subunit vaccines delivered by probiotic bacteria-derived outer membrane vesicles

Rosenthal JA, Huang CJ, Doody AM, Leung T, Mineta K, Feng DD, Wayne EC, Nishimura N, Leifer C, DeLisa MP, Mendez S, Putnam D.

PLoS One. (2014)

 View Abstract

Recombinant subunit vaccine engineering increasingly focuses on the development of more effective delivery platforms. However, current recombinant vaccines fail to sufficiently stimulate protective adaptive immunity against a wide range of pathogens while remaining a cost effective solution to global health challenges. Taking an unorthodox approach to this fundamental immunological challenge, we isolated the TLR-targeting capability of the probiotic E. coli Nissle 1917 bacteria (EcN) by engineering bionanoparticlate antigen carriers derived from EcN outer membrane vesicles (OMVs). Exogenous model antigens expressed by these modified bacteria as protein fusions with the bacterial enterotoxin ClyA resulted in their display on the surface of the carrier OMVs. Vaccination with the engineered EcN OMVs in a BALB/c mouse model, and subsequent mechanism of action analysis, established the EcN OMV's ability to induce self-adjuvanted robust and protective humoral and T(H)1-biased cellular immunity to model antigens. This finding appears to be strain-dependent, as OMV antigen carriers similarly engineered from a standard K12 E. coli strain derivative failed to generate a comparably robust antigen-specific TH1 bias. The results demonstrate that unlike traditional subunit vaccines, these biomolecularly engineered "pathogen-like particles" derived from traditionally overlooked, naturally potent immunomodulators have the potential to effectively couple recombinant antigens with meaningful immunity in a broadly applicable fashion.

 Full Access

Three-photon excited fluorescence imaging of unstained tissue using a GRIN lens endoscope

David M. Huland, Kriti Charan, Dimitre G. Ouzounov, Jason S. Jones, Nozomi Nishimura, and Chris Xu

Biomedical Optics Express 4, 651 (2013)

 View Abstract

We present a compact and portable three-photon gradient index (GRIN) lens endoscope system suitable for imaging of unstained tissues, potentially deep within the body, using a GRIN lens system of 1 mm diameter and 8 cm length. The lateral and axial resolution in water is 1.0 μm and 9.5 μm, respectively. The ~200 μm diameter field of view is imaged at 2 frames/s using a fiber-based excitation source at 1040 nm. Ex vivo imaging is demonstrated with unstained mouse lung at 5.9 mW average power. These results demonstrate the feasibility of three-photon GRIN lens endoscopy for optical biopsy.

 Full Access

Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal

28. Devor A, Tian P, Nishimura N, Teng IC, Hillman EM, Narayanan SN, Ulbert I, Boas DA, Kleinfeld D, Dale AM.

Journal of Neuroscience (2007)

 View Abstract

Synaptic transmission initiates a cascade of signal transduction events that couple neuronal activity to local changes in blood flow and oxygenation. Although a number of vasoactive molecules and specific cell types have been implicated, the transformation of stimulus-induced activation of neuronal circuits to hemodynamic changes is still unclear. We use somatosensory stimulation and a suite of in vivo imaging tools to study neurovascular coupling in rat primary somatosensory cortex. Our stimulus evoked a central region of net neuronal depolarization surrounded by net hyperpolarization. Hemodynamic measurements revealed that predominant depolarization corresponded to an increase in oxygenation, whereas predominant hyperpolarization corresponded to a decrease in oxygenation. On the microscopic level of single surface arterioles, the response was composed of a combination of dilatory and constrictive phases. Critically, the relative strength of vasoconstriction covaried with the relative strength of oxygenation decrease and neuronal hyperpolarization. These results suggest that a neuronal inhibition and concurrent arteriolar vasoconstriction correspond to a decrease in blood oxygenation, which would be consistent with a negative blood oxygenation level-dependent functional magnetic resonance imaging signal.

 Full Access
First    Previous

Sort by Archive Year

Sort by Principal Investigators